
Virtualization I/O Optimization Based on Shared Memory

Fengfeng Ning

Department of Computer Science
and Engineering

Shanghai Jiao Tong University
Email: wikke@sjtu.edu.cn

Chuliang Weng

Department of Computer Science
and Engineering

Shanghai Jiao Tong University
Email: weng-cl@cs.sjtu.edu.cn

Yuan Luo

Department of Computer Science
and Engineering

Shanghai Jiao Tong University
Email: luoyuan@cs.sjtu.edu.cn

Abstract—With the development and popularization of cloud
computing, more and more services and applications are
migrated to cloud for the sake of low cost, high availability and
excellent performance. As the foundation of cloud computing,
virtualization technology integrates and reallocates the com-
puting capability, storage and network resource fairly among
virtual machines and provides a full-featured, isolated and
reliable hardware environment for various operating systems.
Owe to the virtualization technology, computing capability of
virtual machines has achieved fantastic performance, some
even achieve near native speed. However, low I/O performance
is still a bottleneck, especially in I/O intensive applications.
The leading causes include redundant data copy and frequent
VM exits. Focusing on network I/O optimization, we design
and implement virtsocket, a new network socket library in
virtualization scenario which utilizes shared memory for data
transmission. A ring buffer data structure stores I/O requests
of virtual machine which is triggered to issue all requests
with only one hypercall according to scheduler. Data referred
in the I/O requests is read directly from virtual machine
memory by host machine kernel module with interfaces pro-
vided by modified hypervisor. Experimental results show that
throughput is improved by hundreds of times when compared
with original virtualization scenario, and the latency also
achieves a remarkable reduction. Both throughput and latency
performance exceed existing para-virtualization solutions.

Keywords-architecture virtualization, shared memory, I/O
optimization

I. INTRODUCTION

Architecture virtualization has already been widely de-

ployed in data centres and enterprises, which efficiently

reduces cost and improves productivity. With virtualization

technology, different virtual machines with various operating

systems can run on the same host machine simultaneously,

sharing the computing capability, storage and network re-

source, etc. As a result, resource utilization ratio raises,

hardware purchase cost reduces and system maintenance

becomes flexible. Resource owned by host machine is

multiplexed by privileged software referred to as hyper-

visor or virtual machine monitor(VMM), which provides

an integrated hardware environment for virtual machines.

Hypervisor guarantees the isolation property between virtual

machines so that each virtual machine is unaware of others

and cannot intervene them. Resource is distributed fairly

according to scheduling strategy, like credit scheduler in

Xen[1]. Besides, live migration promises that a virtual

machine can be migrated to another host machine while

keeping the services running continuously. All these features

of virtualization technology ensure a secure, robust, reliable

and fair environment for cloud applications.

In a technical perspective, architecture virtualization is

categorized as full virtualization and para-virtualization. Full

virtualization offers all the hardware requirements, including

processors, memory and devices, for guest machine to

run without any modifications. However, some privileged

instructions, like page table update, are completed with

assistants of the hypervisor, which is inefficient and costly.

In para-virtualization, guest virtual machine is modified for a

more efficient execution of privileged instructions. A specific

module is installed in virtual machine to cooperate with

hypervisor to avoid the expensive simulation cost.

KVM[2] is a full virtualization hypervisor product which

needs hardware support, often referred to as hardware-

assisted virtualization. By now, Intel and AMD both support

for hardware-assisted virtualization with Intel-VT[3] and

AMD-V[4] technology, which add two operation modes

for x86 architecture, root operation and non-root operation.

Virtual machine runs in non-root operation and hypervisor

runs in root operation. 4 privilege rings are supported in each

operation so virtual machine can run natively by switching.

VM exit, usually caused by exceptions, will trigger the

switch from non-root operation to root operation. Hardware

loads the context of the hypervisor process automatically.

Virtual machine is resumed with a VM entry initiated by

hypervisor at a proper time. Each virtual machine is actually

a normal process in host machine operating system and

scheduled by the default Linux scheduler, which brings

great convenience and flexibility for maintenance. All the

management tools, scheduling algorithm and optimization

strategy for Linux processes can be applied to virtual ma-

chine processes seamlessly. By the way, para-virtualization

acceleration can be applied to KVM via VirtIO, which needs

qemu-kvm[5] support and VirtIO drivers installed in guest

operating system.

Poor I/O performance of virtualization results from many

aspects. Take network I/O in virtualization scenario for

example, each virtual machine is assigned with a virtual

978-1-4799-1293-3/13/$31.00 ©2013 IEEE

network device, which is apparent to virtual machine oper-

ating system and applications. The virtual network device

connects with physical network device in host machine via

a device file so that network packets can be multiplexed

correctly in and out of virtual machines. However, in such

implementation, packet data is copied redundantly during the

transmission and VM exits occur frequently, which result in

low throughput and long latency. We try to optimize I/O

performance in virtualization scenario via shared memory

strategy. Redundant data copy is avoided by shared memory

transmission and frequent VM exits are reduced with a ring

buffer data structure and effective scheduler. Experimental

results show that throughput is improved significantly and

latency is reduced. Through our efforts focus on network op-

timization, principles of our design and implementation can

be applied broadly to other I/O scenarios in all virtualization

fields, which is discussed in section 3.G.

The rest of this paper is organized as follows. Section 2

elaborates the network I/O architecture and other related I/O

optimization researches. Section 3 presents the design and

implementation of virtsocket, a new network socket library

in virtualization scenario which utilizes shared memory to

transmit data. Section 4 lists the experiments and evaluation

results. Section 5 concludes this paper and summaries our

contributions and future work.

II. BACKGROUND

With more and more I/O intensive applications deployed

in cloud environment, low I/O performance has been the bot-

tleneck in most cases. Many researches have been conducted

to optimize in this situation, including buffer strategy and

instructions optimization by software techniques. A classical

instance goes that two co-resident virtual machines commu-

nicate with each other via a TCP connection, the cost is

expensive, which will be elaborated in section 2.C. Another

real industrial example goes that in a map-reduce application

system, several co-resident virtual machines cooperate with

each other to solve a complicated problem. The input file

are located at host machine and accessed by virtual machine

applications via network file system. In such scenario with

great I/O workloads, I/O performance is playing a vital

role. Different from such specific scenarios, we are aiming

at a more common and wider adopted optimization on

virtualization I/O. And we would like to start with the

network I/O architecture in KVM environment.

A. KVM Network I/O

In KVM virtualization, a slight modified QEMU process

in the host machine is responsible for the simulation of

I/O requests issued by virtual machines. Various devices

simulation is provides by QEMU including a virtual network

interface controller(VNIC), which is bridge connected with

the physical network device through a tap device file. Net-

Figure 1. KVM Network I/O architecture

work packets in and out of virtual machine are transmitted

via this path as depicted in figure 1.

In the original virtualization scenario, network packets

received by applications in virtual machines will arrive

at PNIC firstly, then distributed to correct tap device via

a virtual bridge. QEMU process sends the packets into

right virtual machine and notifies this event by injecting

an interruption. Virtual machine detects the interruption and

processes with the packets. Sending data is in a similar but

reverse way. Network I/O requests from virtual machines are

transmitted to host machine kernel via the virtual network

control controller(VNIC), which induces non-root operation

and root operation switching. Since I/O operations are

simulated in user space QEMU process, transmitted data

need to be copied to host machine user space, which brings

redundant data copy[6].

B. Existing Network I/O Optimization Solutions

1) VirtIO: VirtIO is designed to be a de-facto standard

for virtual I/O devices, proposed by Rusty Tussell[7]. It’s

currently implemented in KVM and lguest and achieves

excellent I/O performance. Like Xen, VirtIO is a para-

virtualization solution that requires drivers to be installed

in guest machines. However, VirtIO is aiming at a unified

framework and interface for device drivers in different virtu-

alization environment since the differences among hypervi-

sors bring great difficulties when writing and maintaining

device drivers. By now, VirtIO drivers for disk, network

and PCI devices have been implemented for various oper-

ating systems. Performance is improved significantly when

compared with original virtualization scenario. However,

redundant data copy still exists.

71

The key data structure in VirtIO is virtqueue, which is a

buffered ring structure that stores I/O requests and issue all

at once. Thus, multiple VM exits are merged and submitted

by a kick function, which reduces VM exits apparently

and improves the performance. Great flexibly is achieved

when multiple virtqueues are used for data transmission and

the kick function is served as interface for user defined

scheduler.

2) Vhost: Vhost[8] is a further improvement based on

VirtIO which optimizes I/O performance by avoiding re-trap

in kernel operation for host machine. Assuming that a kick

function is invoked and a virtqueue of I/O requests are sent

to host. Since KVM kernel module does not process I/O

requests directly, instead it transfers them to QEMU process

in user space. I/O requests are simulated by QEMU process

with system calls invoked inevitably, which brings a kernel

trap. Obviously, it is unwise to trap into kernel space again

since it just comes from there. Vhost solves this problem by

simulating the I/O requests in kernel space directly instead of

transferring to QEMU in user space. At the time this paper

is being written, community has implemented the Vhost-net

for network optimization, disk and PCI device optimization

are still in progress.

3) Software Techniques: Ole Agesen proposed a solution

that utilizes software techniques to avoid hardware virtual-

ization exits in VMware products[9]. Hypervisor inspects

guest code dynamically to detect back-to-back pairs of

instructions that both exit, which will save 50% of the

cost. Furthermore, they generalize from pairs to clusters of

instructions that include loops and other control flows. A

binary translator is used to generate customized translations

when handling exits instructions[9].

C. Inter-VM Network Optimization

Virtualization techniques ensure the isolation, security and

fair resource sharing among virtual machines. However,

great cost is paid in this specific scenario. For example,

two co-resident virtual machines communicate with each

other inefficiently, since they are unaware of the virtualized

environment. Data is copied redundantly and vm exits occur

frequently during communication. Many researches have

been conducted to optimize the network performance in such

scenario.

1) XenLoop: XenLoop[10] is a full transparent and high

performance inter-VM network loopback channel imple-

mented in Xen. Guest virtual machine can switch between

the standard network path and XenLoop channel seamlessly.

Xenloop intercepts network packets under the network layer.

If co-resident communication is detected, packets would

be sent to target VM through shared memory channel that

bypasses the virtual network interface controller.

2) XenSocket: XenSocket[11] is high performance net-

work channel designed for co-resident inter-VM communi-

cation with a static circular memory buffer shared between

two virtual machines. It’s implemented in Xen and only

supports one-way connection. Transmitted data is written

in shared memory firstly by the sender VM and read asyn-

chronously by the reader VM. Notifications are transmitted

through the event channel provided by Xen. A new socket

family is created, which provides a standard socket API for

applications.

3) XWay: XWay[12] provides optimizations for inter-

VM TCP communications while keeps the user-level trans-

parency. Network protocol stack is modified so that shared

memory can be used to transmit data for TCP connections

between co-resident virtual machines. Besides, XWay sup-

ports live migration. The implementation of XWay relies on

grant tables and event channel provided by Xen.

III. DESIGN AND IMPLEMENTATION

We try to improve I/O performance in virtualization with

shared memory. Our research mainly focuses on network

I/O in KVM virtualization. The feasibility of applying the

optimization principles to other I/O is demonstrated in 3.G.

After trials and efforts we would like to introduce virtsocket:

a new network socket library implemented in KVM virtual-

ization environment which utilizes shared memory for data

transmission. The shared memory optimization brings higher

throughput and less latency when compared with original

virtualization scenario. Take original network virtualization

scenario for instance, redundant copy and frequent non-

root operation and root operation switching brings too much

overhead when data is transmitted via TCP or UDP channel,

results in poor performance finally. With virtsocket, I/O

requests from virtual machine are buffered in a ring list and

issued with one hypercall according to scheduler. We would

like to make virtsocket a general socket library in different

architecture virtualization environment.

A. Data structure

In virtsocket, data to be transmitted is represented by a

descriptor data structure, which keeps all the properties of

a data chunk including the memory address, data length,

offset and so on. Descriptors are organized in a ring buffer

data structure, named descriptor list. A descriptor list of

I/O requests are issued with one hypercall instead of one

by one. Host machine maintains a descriptor list for each

virtual machine and synchronizes with the descriptor list in

corresponding virtual machine. When the virtual machine

process switches from non-root operation to root operation,

host KVM virtsocket module updates local descriptor list by

reading the memory of the descriptor list in guest machine.

After I/O requests are completed, latest descriptor list is

written back to guest memory to keep update.

B. Socket API

Aiming at flexible and convenient I/O acceleration library

for virtualization, a standard socket interface is provided

72

for applications in virtual machines. Little modifications

are paid to apply applications to virtsocket. New socket

address family(AF VIRT) and protocol family(PF VIRT)

are registered in Linux kernel by virtsocket modules, which

handle virtsocket operations in kernel.

C. Hypercall

Like system call in Linux kernel, hypercall acts similarly

but invoked from guest virtual machine user space and

responded from host machine kernel space. Hypercall is

expensive because VM exit will be triggered. However, the

quick response and high priority still make hypercall a good

choice for message passing in specific scenarios.

Considering the timeliness, hypercall is used to send

requests in virtsocket via standard socket interface like con-
nect, accept, bind, send and recv. Though VM exit caused

by hypercall is expensive, methods like connect, accept and

bind are invoked with finite times in real applications, which

causes negligible cost in benchmarks and real productions.

However, methods like send and recv need be to optimized

since they are invoked frequently. A ring buffer descriptor

list is implemented as a buffer for send and recv requests

in virtsocket. A simple but practical scheduling strategy is

designed to trigger the hypercall to flush all the I/O requests

in descriptor list.

Adding a hypercall to a virtual machine consists of 2

steps. First, a system call sys virtsocket is implemented

in virtual machine Linux operating system. In the imple-

mentation function of the system call, running environment

is detected whether current operating system is a virtual

machine via KVM APIs, since it makes no sense to add

a hypercall in a non-virtual machine. Secondly, hypercall is

performed by invoking the interfaces of KVM library, which

changes the virtual machine process from non-root operation

to root operation. We slightly modified the KVM module

in host machine to add support for capturing virtsocket

hypercalls. After hypercall is captured, I/O requests are

transferred to a server virtsocket, which reads the parameters

stored in registers, performs I/O operations and responses the

results back.

D. Shared memory

In a global perspective, all co-resident virtual machines

share the computing capability and storage resource of the

host machine. Theoretically, communication between co-

resident virtual machines can achieve similar performance

with inter-process communication. I/O of the virtual ma-

chine can achieve similar performance with that in host

machine. But the truth is that it’s impractical and unrealistic,

since the isolation, security and privacy need to be ensured

for a stable and independent environment. Even though,

hypervisor still has chances to get access to virtual machines,

which provides possibilities for optimizations in specific

Figure 2. global diagram of virtsocket

scenarios, such as shared memory implementation between

virtual machine and host machine in our research.

Logically, hypervisor works between host machine and

virtual machine and handles the management, scheduling

and resource distribution for virtual machines. In KVM, a

virtual machine instance is actually a process running in

host machine, whose logical memory corresponds to the

physical memory of the virtual machine. KVM module is

responsible for the memory mapping between the virtual

machine physical address and the logical address in the

host machine, which is implemented by shadow page or

extended page table(EPT)[15]. Guest virtual machine mem-

ory can be accessed by host kernel via interfaces of KVM

modules, which is modified and used in our research. When

a virtsocket hypercall is captured by KVM, the descriptor

list and I/O data of virtual machine are transmitted to host

machine via a hypercall. By the way, unpublished interface

also support for VM logical and physical address translation.

E. Global workflow

Sections above describe some important points in the

design and implementation of virtsocket, covering the ap-

plication interface, hypercall implementation and shared

memory strategy design. In this section, a global workflow

of virtsocket in virtualization environment will be presented,

which is depicted by a diagram in figure 2.

Guest virtual machine and host machine both need virt-

socket module loaded in kernel which registers AF VIRT

address family and PF VIRT protocol in Linux operating

system. KVM kernel module in host machine are slightly

modified to add support to recognize the virtsocket hy-

percall. Applications running in guest machine can enjoy

the virtsocket optimization by including related header files

and creating socket instance with virtsocket family address

73

AF VIRT. Virtsocket kernel module in the guest virtual

machine allocates memory for the descriptor list with static

size. The reason why we used a static size descriptor list

is that the dynamic allocation cost can be avoided since

it brings great workload to allocate and free new descrip-

tor memory which makes the system unstable. Then the

virtsocket instance invokes connect method, a hypercall is

issued to host machine with the physical memory address

of the descriptor list as a parameter. Server virtsocket stores

the address for synchronization later.

After virtsocket connection is established, everything is

ready for data transmission. Applications in virtual machine

send data via the socket API send. Data is copied to kernel

space firstly and then an empty descriptor is found and

filled with information about this data chunk, such as the

memory address, length and status, etc. The descriptor list

is a ring buffer data structure, which means I/O requests

are buffered and issued according to scheduler. A fair and

efficient scheduling algorithm is important and should be

designed carefully because an intensive issue ratio will cause

frequent VM exits. On the contrary, loose issue ratio will

result in long latency. In virtsocket, we implemented the

scheduler simply: when the ring buffer descriptor list is

full, all requests are issued at once via a hypercall. It’s

apparent that VM exits will decrease since the hypercall

will result in only one VM exit instead of multiple VM

exits for every I/O request. We are aiming at optimizing

the I/O performance via shared memory and exploring the

maximum optimization. So a simple and efficient scheduling

algorithm would make things clean and direct.

When VM exit occurs, several parameters are stored in

specified registers and captured by KVM module in host

machine. Besides, KVM module in host machine provides

interfaces to read and write memory of virtual machines,

which facilitates the shared memory implementation in

virtsocket. When the descriptor list satisfies the scheduling

prerequisites, a hypercall is triggered, which passes parame-

ters to the host machine, including the hypercall number and

description list memory address. Server virtsocket receives

these parameters and updates local descriptor list by reading

the latest descriptor list content via access to virtual machine

memory directly. After all I/O requests are completed, latest

descriptor list in host machine is written to specific guest

virtual machine memory for synchronization.

F. Compare with previous work

XenLoop, XenSocket and XWay optimize network I/O

performance for co-resident inter-VM communication via

different implementations. However, the key principle be-

hind is the utilization of shared memory, which alters

the data transmission path to bypass the virtual network

interface. Other optimizations solutions utilize the shared

memory strategy to achieve significant improvement with

different emphasises. Fido[13] focuses on enterprise appli-

ances and ZIVM[14] implements a delicate architecture to

achieve zero copy for co-resident inter-VM communication.

Different from previous work, we are trying to improve

the I/O performance in virtualization environment, especially

for the network communication between virtual machine and

host machine. The original intention of this paper is to solve

the poor performance when virtual machine applications

read or write files in host machine via network file system.

Let’s assume that several virtual machines are running on

the same host machine, which cooperate with each other

in a map-reduce application. It’s a wise decision to put

the input file at host machine, which can be accessed by

virtual machine via network file system. Storage resource

can be significantly saved since the input file is located

at host machine instead of multiple duplications in every

virtual machine, especially when the input file are huge in

most cases. Thus, a high performance I/O channel between

virtual machine and host machine is needed. Shared memory

is demonstrated to be a good idea, as many previous work

has demonstrated, and is rarely used for virtual machine

I/O optimization in KVM environment. So we decide to do

something to optimize I/O performance in such scenario. To

summarize, our work differs from previous work mainly on

two aspects:

1) We are aiming at improving virtualization I/O perfor-

mance and our efforts mainly focus on network I/O.

Feasibility will be demonstrated in next section that

similar idea can be applied to other virtualization I/O

with slightly modification of the interface and drivers.

2) Different from the specific co-resident inter-VM net-

work communication scenario in XenLoop, Xensocket

and so on, virtsocket is designed for a more general

and common scenario in which the other endpoint

of virtsocket connection can be located anywhere,

not limited in co-resident VMs. According to cur-

rent implementation, virtsocket connection established

between virtual machine and host machine achieves

significant performance improvement.

3) The shared memory implementations are different. In

previous work, shared memory is a public memory

zone used for data transmission between different

VMs, and they can get access equally. However, in

our work, shared memory is not what it indicates

literally strictly. With the assistance of hypervisor, host

machine can get access to virtual machine memory

directly, in which way the data is transmitted and

descriptor list is synchronized.

G. Feasibility in other I/O systems

We apply shared memory optimization to virtualization

network I/O scenario, which can also be applied to other

virtualization I/O systems easily. The key principle behind

virtsocket is the utilization of shared memory for data

transmission. So when it comes to other I/O scenarios, like

74

disk or peripheral devices, we need to alter the interfaces

of drivers to support for applications. I/O path from virtual

machine to host machine is similar to network I/O, which

can be optimized with same way: requests are buffered in a

ring data structure and issued according to scheduler. Most

importantly, data is transmitted via shared memory that the

corresponding kernel module in host machine can get access

to virtual machine memory directly for right information in

need, which is supported by current popular hypervisors.

Here we just put forward a shared memory solution for

I/O optimization and implement virtsocket for network I/O

scenario in KVM. The feasibility for general I/O systems

optimization in virtualization environment can be achieved

with similar techniques.

IV. PERFORMANCE EVALUATION

Virtsocket transmits data via shared memory and deduces

VM exits by a ring buffer data descriptor and scheduling

strategy, which is expected to achieve big improvements

in performance. Like any other network evaluations, we

choose throughput and latency as the criteria to judge the

network performance. We conducted the experiments with

the latest qemu-kvm 1.2.0 version in Linux operating system

with 3.2.0 kernel version for both host machine and guest

virtual machine. Hardware environments includes Intel core

i3 2.1.3GHz CPU, supporting Intel-VT technology, 3GB

memory for host machine and 718M memory allocated

for virtual machines. We collected the experimental results

carefully, each unit test is performed at least 3 times and

the average value is token as the result. Besides, we made a

performance comparison between different network scenar-

ios listed as below.

1) original virtualization environment: virtual machine is

running without any modifications, external drivers or

any accelerations.

2) virtualization with VirtIO: VirtIO network drivers are

installed in virtual machines.

3) Unix domain socket: a Unix domain socket connection

is established with both endpoints in the same host

machine.

4) virtsocket: virtsocket is loaded in virtual machine and

used for network communication.

A. Throughput

We evaluated the throughput performance of all network

scenarios in the same environment that a connection between

the virtual machine and host machine is established to

transmitting large volumes of data. To ensure the reliability

and objectivity, BigdataBench[16] is brought in our research,

which is a big data benchmark suite, providing tools to

generate big data from seed files by analysis and expansion,

while keeping the semantic close to real big data. Our test

program reads the data generated by BigdataBench tools

and sends to another end of the connection, which simulates

Figure 3. throughput in different network scenarios

a prototype of real applications, transmitting semantic and

meaningful data, instead of random, regular even the same

data every time.

Besides, we care about how the performance goes with

different socket message size. For example, 1M data are to

sent with each message 1k bytes. 1024 requests are needed

to finish the task. However, if each message contains 4k

bytes, only 256 requests are sufficient. In a word, bigger

message size increases the duration of request but decreases

the request quantities. We tested the throughput performance

of each network scenario in different message size ranging

from 56 bytes to 16k bytes. The results are listed in table 1

and depicted in figure 3.

According to experimental results, Unix domain socket

always exceeds others in every message block size, since

data packets are transmitted through a high throughput

channel between endpoints, bypassing the protocol stack.

Original virtualization environment preforms worst always

because the network packets are transmitted with heavy

cost and redundant copy. Virtualization with VirtIO drivers

improves when compared with original virtualization, owing

to a virtqueue data structure, which stores I/O requests and

is triggered by a kick function interface. However, redundant

data copy still remains. Virtsocket improves I/O throughput

even more when compared with VirtIO scenario. As we can

see, throughput of virtsocket performs better than VirtIO

when message block size is bigger than a certain size

between 128 bytes and 256 bytes, and even better when

message block size increases. However, the increasing ratio

decreases when message block size comes to 4k bytes,

because the descriptor list is an array with fixed length and

each descriptor can only describe a finite size of data. So

when message block size exceeds 4k bytes, data will be

divided into chunks to fill other descriptors, resulting in

slower increasing ratio.

B. Latency

Latency is an important factor to reflect system perfor-

mance, especially in I/O sensitive systems. We evaluated

75

Table I
THROUGHPUT IN DIFFERENT NETWORK SCENARIOS

56 128 256 512 1k 2k 4k 8k 16k
origin 0.41 0.94 1.91 3.87 8.68 7.66 11.81 12.11 14.70
VirtIO 31.20 41.28 57.08 74.74 86.24 97.09 100.38 106.64 108.67

virtsocket 16.36 35.14 65.73 116.2 196.58 301.81 390.42 430.42 453.40
Unix Domain socket 737.02 1229.13 1587.10 1987.32 2192.88 2458.15 2668.43 2977.87 3097.89

Figure 4. latency in different network scenarios

the latency in different network scenarios by carefully de-

signed microbenchmarks. One byte data are sent via network

connection with tremendous times. Cost spent on sending

one byte of data is negligible, however, other costs, like the

system switching, kernel trap and so on, impact the latency

directly. The average period of a request can be calculated as

the criterion of latency. We compared the latency in different

network scenarios with message block size ranging from 56

bytes to 16k bytes. Results are listed in table 2 and depicted

in figure 4.

As experiments show, latency of the original virtualization

increases dramatically along with the message block size,

surpassing all other scenarios. Virtualization with VirtIO

drivers in guest virtual machine improves dozens of times

when compared with original scenario, and appears to be

linear relation with message block size. Virtsocket and Unix

domain socket both have excellent performance with short

latency. For Unix domain socket, kernel network stack is

bypassed resulting in a short latency. I/O requests sent via

virtsocket connection is triggered by a hypercall, which

responses instantly when the request is completed because

of the high priority of hypercall.

C. Evaluation summary

As evaluation results show, virtsocket achieves significant

improvements in both throughput and latency, exceeds the

original virtualization scenario for far. When compared with

VirtIO, throughput of virtsocket performs better when mes-

sage block size is bigger than certain size between 128 bytes

and 256 bytes, and even better when message block size

increases. Latency is also optimized with help of hypercall

and a simple scheduling algorithm. Different from other 3

network scenarios, Unix domain socket bypasses the kernel

network stack which reduces the cost and achieve highest

performance among all.

The performance of original virtualization scenario ap-

pears to be extremely poor. The most critical reasons include

redundant data copy and frequent VM exits cost. Virtsocket

solves the redundant copy problem by shared memory data

transmission path. Host server virtsocket can get access to

virtual machine memory directly via interfaces of KVM

module, which turns out to be a significant improvement.

Besides, frequent VM exits problem is alleviated by ag-

gregation of VM exits in a ring buffer descriptor list, and

all I/O requests are issued with one hypercall according to

scheduler.

Shared memory strategy is an efficient way to improve

I/O performance in virtualization. However, some underlying

risks also exist. Since server virtsocket can get access to all

descriptors in a descriptor list, vicious applications might

get access to unauthorised memory address, which brings

potential risks including intentional deceive, vicious attacks

and so on. Assumption can be made that virtsocket is a

part of trusted computing base, but it solves nothing in real

applications. A more elaborate grant strategy is expected

which ensures server virtsocket can only get access to

authorized memory address, which is what we are working

on.

V. CONCLUSION

With the popularization of the cloud computing, architec-

ture virtualization has been a key factor to ensure security,

efficiency and stability. Though the computing capability of

virtual machine running on the latest virtualization product

is excellent, some even achieve near native speed, I/O

performance is always the bottleneck, especially in I/O in-

tensive scenarios. We explored the possibility to improve I/O

performance in virtualization via shared memory strategy

and introduced virtsocket, a new network socket library in

virtualization scenario which utilizes shared memory for data

transmission. Experiments were conducted to demonstrate

the significant improvement in both throughput and latency

compared with original virtualization scenario and existing

para-virtualization acceleration such as VirtIO.

To sum up, our contributions include:

1) Improve I/O performance with shared memory strat-

egy. Aiming at network I/O optimization in virtual-

76

Table II
LATENCY IN DIFFERENT NETWORK SCENARIOS

56 128 256 512 1k 2k 4k 8k 16k
origin 123.44 127.39 127.01 127.75 105.97 251.62 315.75 617.72 1007.27
VirtIO 2.74 3.39 3.40 4.98 7.90 17.00 31.22 62.07 121.09

virtsocket 3.12 3.24 3.27 3.25 3.62 3.69 3.79 7.36 14.01
Unix Domain socket 0.79 0.79 0.82 0.87 0.98 1.14 2.13 2.37 4.26

ization, we implemented virtsocket, which achieves

an significant improvement in both throughput and

latency as experimental results show.

2) Reduce the VM exits by a ring buffer data structure

and scheduler. The ring buffer data structure descriptor

list stores I/O requests and issues according to sched-

uler. multiple I/O requests are merged and issued by

only one hypercall, which reduces the cost brought by

frequent VM exits.

Virtsocket is aiming at a general socket library for appli-

cations in different architecture virtualization environments.

By now, the research is still in progress and the ongoing re-

search points include vicious memory access, asynchronous

I/O and better hypercall scheduling algorithm. We believe

that poor I/O performance in industrial virtualization fields

needs to be improved urgently in innovative ways. Shared

memory I/O optimization is verified as a possible solution

which is expected to play a big role in the future.

ACKNOWLEDGEMENT

We would like to thank everybody involved in researches

and experiments, with whom new ideas are sparking and ex-

periments are conducted successfully. Especially, we would

like thank Chuliang Weng and Yuan Luo, who offer us wise

guidance and valuable suggestions. This work was supported

in part by the National Basic Research Program of China

under Grant 2013CB338004, and the Research Fund for the

Doctoral Program of Higher Education of China under Grant

20100073110016. We would also like to acknowledge the

foundation TS0520103001 of Shanghai Jiao Tong University

and University of Leuven.

REFERENCES

[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt and A. Warfield. Xen and art
of Virtualization. In Proceedings of the 2nd conference on
Real, Large Distributed Systems, Vol. 37 (October 2003), pp.
164-177.

[2] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm:
the Linux virtual machine monitor. In OLS 2007: Proceedings
of the 2007 Ottawa Linux Symposium.

[3] Intel. Hardware-Assisted Virtualization Technology - Improv-
ing the fundamental flexibility and robustness of traditional
software-based virtualization solutions. http://www.intel.com/
content/www/us/en/virtualization/virtualization-technology/
hardware-assist-virtualization-technology.html

[4] AMD. AMD Virtualization. http://sites.amd.com/us/business/
it-solutions/virtualization/Pages/virtualization.aspx

[5] QEMU. QEMU: Open Source Processor Emulator. http:
//wiki.qemu.org/Main\ Page

[6] Ding S, Ma R, Liang A, et al. Optimization for Inter-VMs
network performance on KVM.

[7] R. Russell, R. virtio: towards a de-facto standard for virtual
I/O devices. SIGOPS Oper. Syst. Rev. 42, 5 (2008), 95103.

[8] VHost. http://www.linux-kvm.org/page/UsingVhost

[9] Agesen O, Mattson J, Rugina R, et al. Software techniques for
avoiding hardware virtualization exits. Tech. rep., VMware,
2011.

[10] J. Wang, K.-L. Wright, and K. Gopalan. XenLoop: a transpar-
ent high performance inter-vm network loopback. in HPDC
’08: Proceedings of the 17th international symposium on High
performance distributed computing. New York, NY, USA:
ACM, June 2008, pp. 109-118.

[11] X. Zhang, S. McIntosh, P. Rohatgi, and J. L. Griffin.
XenSocket: A High-Throughput Interdomain Transport for
Virtual Machines. in Mid-dleware ’07: Proceedings of the
ACM/IFIP/USENIX 2007 International Conference on Mid-
dleware. New York, NY, USA: Springer, November 2007, pp.
184-203.

[12] K. Kim, C. Kim, S.-I. Jung, H.-S. Shin, and J.-S. Kim,
Inter-domain Socket Communications Supporting High Per-
formance and Full Binary Compatibility on Xen, inVEE
’08: Proceedings of the fourth ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments.
New York, NY, USA: ACM, March 2008, pp. 11-20.

[13] Burtsev A, Srinivasan K, Radhakrishnan P, et al. Fido: Fast
inter-virtual-machine communication for enterprise appli-
ances, in Proceedings of the 2009 conference on USENIX
Annual technical conference. USENIX Association, 2009: 25-
25.

[14] Mohebbi H R, Kashefi O, Sharifi M. Zivm: A zero-copy
inter-vm communication mechanism for cloud computing.
Computer and Information Science, 2011, 4(6): p18.

[15] Sheng Yang Extending KVM with new Intel Virtualiza-
tion technology. http://www.linux-kvm.org/wiki/images/c/c7/
KvmForum2008\$kdf2008\ 11.pdf

[16] Gao W, Zhu Y, Jia Z, et al. BigDataBench: a Big Data
Benchmark Suite from Web Search Engines. arXiv preprint
arXiv:1307.0320, 2013.

77

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

