
Accurate Analytical Models for Message Passing on Multi-core Clusters 

Bibo Tu1, Jianping Fan2, Jianfeng Zhan1, Xiaofang Zhao1

1National Research Center of Intelligent Computing Systems 
Institute of Computing Technology 

 Chinese Academy of Sciences  
Beijing 100190, China 

{tbb, jfzhan}@ncic.ac.cn, zhaoxf@ict.ac.cn 

2Research Center of High Performance Computing  
Shenzhen Institute of Advanced Technology 

 Chinese Academy of Sciences  
Shenzhen 518067, China 

fan@ict.ac.cn 

Abstract—Memory hierarchy on multi-core clusters has two-
fold characteristics: vertical memory hierarchy and horizontal 
memory hierarchy. Vertical memory hierarchy has been 
modeled by previous work (e.g. memory logP, lognP, log3P etc.) 
to analyze middleware’s effects on point-to-point 
communication with different message sizes and message 
strides; Horizontal memory hierarchy has become more 
prominent due to distinct performance among three levels of 
communication in a multi-core cluster: intra-CMP, inter-CMP 
and inter-node, which should adequately be considered. 
Derived from lognP and log3P models, new analytical models 
mlognP and its reduction 2log{2,3}P are proposed to unitedly 
abstract memory hierarchy on multi-core clusters in vertical 
and horizontal levels. The results of performance evaluation 
show that it is indispensable to incorporate horizontal memory 
hierarchy into new models suitable for multi-core clusters, and 
2log{2,3}P model can predict communication costs for message 
passing on multi-core clusters more accurately than log3P
model.

Keywords-analytical model; memory hierarchy; CMP; multi-
core clusters; message passing 

I. INTRODUCTION

As a matter of fact, multi-core clusters have been the 
most popular platforms in parallel computing. In the new 
Top500 supercomputer list published in November 2007, 
about 87.6% processors are multi-core processors and about 
81.2% supercomputers have used cluster architecture [1]. 
Intuitively, multi-core processors can speedup application 
performance by dividing the workload to different cores. 
However, compared with SMP or NUMA clusters, 
applications on multi-core clusters have not gotten optimal 
performance and scalability. Accordingly, it is crucial to 
have an in-depth understanding on characteristics of multi-
core clusters and their effects on application behaviors.  

Initially, applications are likely to treat multi-core 
processors, also called Chip Multiprocessor (CMP), simply 
as conventional symmetric multiprocessors (SMPs). 
However, chip multiprocessors feature several interesting 
architectural attributes differently from SMPs. One such 
architectural feature is the design of multi-level cache 
hierarchies. The two broad strategies deployed in current 
multi-core processors exist in processors from Intel and 
AMD. Intel processors provide a shared L2 cache whereas 
AMD multi-core processors deploy HyperTransport links for 
quick data transfers. Also, these architectures employ 

efficient cache coherency protocols. However, irrespective of 
these different hierarchies, both the systems enable very fast 
sharing of data across the cores. Further, to scale the 
bandwidth available to the coherency traffic, the cores are 
either connected via multiple buses as in Intel or by 2-D 
mesh HyperTransport links. Apart from providing good data 
movement capabilities across the processing cores, the 
caching hierarchies are useful in reducing the pressure on the 
memory bandwidth [2].  

Consequently, above multi-core specific characteristics 
complicate memory hierarchies on multi-core clusters. 
Understanding their effects will potentially benefit the 
performance optimization of not only application algorithms, 
but also message passing. For many scientific applications, 
the cost of message passing (e.g. MPI communication 
middleware) greatly affects overall execution time. Since 
MPI has still emerged as the primary programming paradigm 
for writing efficient parallel applications before the 
emergence of new programming paradigms suitable for 
multi-core/many-core platforms in the future, it is of 
practical significance to study on performance analysis and 
optimization of MPI communication middleware on multi-
core clusters at present. This paper presents two-fold 
characteristics of memory hierarchy on multi-core clusters in 
detail: vertical memory hierarchy and horizontal memory 
hierarchy. Vertical memory hierarchy has been modeled by 
previous work (e.g. memory logP, lognP, log3P etc. [3, 4, 5]); 
Horizontal memory hierarchy has become more prominent 
due to distinct performance among three levels of 
communication in a multi-core cluster: intra-CMP, inter-
CMP and inter-node, which should adequately be considered. 
Therefore, this paper proposes new analytical models mlognP
and its reduction 2log{2,3}P to unitedly abstract memory 
hierarchy in vertical and horizontal levels so as to accurately 
predict and evaluate the performance of message passing on 
multi-core clusters, which will benefit our ongoing work on 
the multi-core aware optimization of MPI communication 
middleware.

The rest of the paper is organized as follows: In Section 
II we introduce two-fold characteristics on memory 
hierarchy on multi-core clusters: vertical memory hierarchy 
and horizontal memory hierarchy. In Section III we describe 
new analytical models suitable for multi-core clusters. 
Performance evaluation is given in Section IV. Related work 
is discussed in Section V. Finally we conclude and point out 
future work directions in Section VI. 

Parallel, Distributed and Network-based Processing

1066-6192/09 $25.00 © 2009 IEEE

DOI 10.1109/.17

133

Parallel, Distributed and Network-based Processing

1066-6192/09 $25.00 © 2009 IEEE

DOI 10.1109/PDP.2009.18

133

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 10, 2009 at 05:22 from IEEE Xplore.  Restrictions apply. 



II. MEMORY HIERARCHY ON MULTI-CORE CLUSTERS

The ever increasing speed gap between CPUs and 
memory systems and current multi-core technology 
complicate memory hierarchy. Memory hierarchy on multi-
core clusters takes on two-fold characteristics in the vertical 
and horizontal levels as shown in Figure 1 as an example of 
Intel Dual-Core Xeon. 

A. Vertical Memory Hierarchy 
For message passing in a cluster system, distributed 

point-to-point communication requires moving data from the 
source process’ local memory to the target process’ local 
memory. Sends and receives are explicit communications 
accomplished using implicit communication mechanisms 
provided in middleware and operating system. 
Communication cost consists of the sum of memory and 
network communication times. Memory communication is 
the transmission of data to/from user buffer, kernel buffer, 
from/to the local network buffer. Network communication is 
data movement between source and target network buffers. 
For example, an MPI_Send() of a strided message describes 
a point-to-point transfer explicitly. To ensure that packed 
data is actually sent across the network, MPI middleware 
performs a series of implicit communications to complete the 
transfer (i.e., packing strided data at the source and 
unpacking data by stride at the target). Some transmissions 
occur in user space, others via the operating system in kernel 
space [4]. The message path of above point-to-point 
communication shows memory hierarchy in a vertical level 
as shown in Figure 1. 

Fig.1. Memory hierarchy on multi-core clusters 

Improvements in memory speed will continue to lag 
behind improvements in processor and network interconnect 
technologies. Given current technological trends, memory 
communication cost (e.g. MPI middleware cost) will 
increase in proportion to overall communication cost. So it is 
indispensable to incorporate middleware costs into analytical 
models for message passing. 

LognP model and its reduction log3P model can 
accurately analyze communication performance with 

memory hierarchy in the vertical level. LognP model is 
formalized as follows using five parameters [4, 5]: 

l: the effective latency, defined as the length of time the 
processor is engaged in the transmission or reception of a 
strided or non-contiguous message over and above the cost 
of a non-strided or contiguous transfer. The system-
dependent l cost is a function of the message data size (s)
under a variable stride or distribution (d). We denote this 
function as f(s,d)=l, where variable s corresponds to a series 
of discrete message sizes in bytes, variable d corresponds to 
a series of discrete distributions or stride distances in bytes 
between array elements, and function f is the additional time 
for transmission in microseconds over and above the non-
strided or contiguous cost for variable message data size s
and distribution or stride d.

o: the overhead, defined as the length of time the 
processor is engaged in the transmission or reception of a 
non-strided or contiguous message. The system-dependent o
cost is a function of the message data size (s) under a fixed 
unit stride or distribution (d=1 array element). We denote 
this function as f(s,d)=f(s,1)=o, where variable s corresponds 
to a series of discrete message sizes in bytes, variable d=1
array element corresponds to the unit stride or distribution 
distance in bytes between adjacent array elements, and 
function f is the time for transmission in microseconds for 
variable message data size s and distribution or stride d=1 
element. This average, unavoidable overhead typically 
represents the best case for data transfer on a target system. 
This cost is bounded below by the data size divided by the 
hardware bandwidth. 

g: the gap, defined as the minimum time interval between 
consecutive message receptions at a processor. Without 
resource contention, assuming this parameter has no impact 
on communication cost, effectively using o = g.

n: the number of implicit transfers along the data transfer 
path between two endpoints. Endpoints can be as simple as 
two distinct local memory arrays or as complex as a remote 
transfer between source and target memories across a 
network. 

P: the number of processes or processors. 
In a word, vertical memory hierarchy behaves as follows: 

parameter n denotes the number of implicit communication 
along the message path; the memory communication cost 
varies with message size (s) and message distribution (d,
strides). LognP denotes the function f(s,d) to express the 
effective latency (l) and overhead (o) in message 
transmission, i.e. l=f(s,d) and o=f(s,1). So lognP estimates 
point-to-point communication cost as: 

��
�

�

�

�

����
1

0

1

0
}),()1,({}{

n

i
ii

n

i
ii dsfsfloT ����������	

For simplicity, log3P model assumes n=3 points of 
implicit communication. Equation (1) reduces to: 

�
�

��
2

0

}),()1,({
i

ii dsfsfT

}),()1,({}),()1,({}),()1,({ 221100 dsfsfdsfsfdsfsf ������

134134

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 10, 2009 at 05:22 from IEEE Xplore.  Restrictions apply. 



i.e. }{}{}{ 221100 lololoT ������                      (2) 

Equation (2) describes three implicit communication 
points along the message path of distributed point-to-point 
communication as follows: 0) Middleware communication 
from user buffer to the network interface buffer; this includes 
the effects of hierarchical memory. 1) Communication across 
the network. 2) Middleware communication from the 
network interface buffer to user buffer; this includes the 
effects of hierarchical memory. Since packets are contiguous 
and fixed size for point i=1, l1 is assumed to be zero. More 
precisely and simply, the costs at point i=0 and i=2 are 
regarded as equal. Assuming: 

middleware overhead=omw={o0+o2},
middleware latency =lmw={l0+l2},
network overhead=onet= o1.
Thus, the log3P model can be expressed semantically as: 

netmwmw olo
lollooT

���
������ }{}{}{ 112020 (3)

In a word, lognP and log3P models disclose the intrinsic 
characteristic of distributed point-to-point communication: 
software-parameterized memory communication 
(middleware costs) and hardware-parameterized network 
communication, i.e. memory hierarchy in the vertical level. 
So they are very suitable for conventional cluster computing 
platforms, including SMP and NUMA clusters. 

B.  Horizontal Memory Hierarchy 
Apart from vertical memory hierarchy, multi-core 

clusters take on prominent characteristic of horizontal 
memory hierarchy. Horizontal memory hierarchy is mainly 
brought by distinct performance among three levels of 
communication in a multi-core cluster: intra-CMP, inter-
CMP and inter-node communication as shown in Figure. 1. 
The communication between two processors on the same 
chip is referred to as intra-CMP communication in this paper. 
The communication across chips but within a node is 
referred to as inter-CMP communication. Intra-CMP and 
inter-CMP communications in the same node are also 
referred to as intra-node communication. And the 
communication between two processors on different nodes is 
referred to as inter-node communication. 

Due to multi-level cache hierarchies, CMPs offer unique 
capabilities that are fundamentally different from SMPs [6]: 


 The inter-core communication performance 
(bandwidth and latency) on a CMP can be many 
times better than is typical for a SMP.  


 Cache hierarchy organization (Intel processors 
provide a shared L2 cache whereas AMD multi-
cores deploy HyperTransport links for quick data 
transfers) on multi-core processors makes inter-core 
memory access far faster than is typical for a SMP, 
only with shared main memory.  

So it does, horizontal memory hierarchy on multi-core 
clusters becomes more prominent and brings the following 
features differently from conventional SMP clusters, which 
can also be seen from recent studies [7, 8]: 

Prominent intra-node communication performance: For 
multi-core clusters, the performance (bandwidth and latency) 
of intra-node communication is many times better than inter-
node, and intra-CMP has the best performance because data 
can be shared through L2 cache as the example of Intel 
Quad-core Xeon. However, for SMP clusters, the 
performance of intra-node communication only with shared 
main memory can’t absolutely excel that of inter-node 
communication, because of memory copy cost of intra-node 
communication and some zero-copy and high performance 
schemes of inter-node communication, e.g. InfiniBand and 
RDMA-enabled interconnects[9]. 

Equal chance between intra-node and inter-node 
communications: For SMP clusters, the most of message 
distribution is distributed point-to-point communication 
(inter-node communication). However, on average about 
50% messages in a multi-core cluster are transferred through 
the intra-node communication [7]. With the ever-increased 
number of computing cores in a CMP, especially for future 
many-core processors, the chance of intra-node 
communication will be more dominant. 

III. NEW MODELS SUITABLE FOR MULTI-CORE CLUSTERS

Vertical memory hierarchy on multi-core clusters implies 
overlooked memory communication costs of point-to-point 
message passing varied with different message sizes and 
message strides, while horizontal memory hierarchy implies 
distinct performance of point-to-point message passing 
among different communication levels on multi-core clusters. 
This paper proposes new models mlognP and its reduction 
2log{2,3}P to abstract memory hierarchy in vertical and 
horizontal levels to accurately analyze communication 
performance on multi-core clusters, derived from lognP and 
log3P models only focusing on vertical memory hierarchy. 

A.  mlognP Model 
Differently from lognP model, mlognP model adds a new 

parameter ‘m’ to define different communication levels, 
while parameter ‘n’ denotes the number of implicit transfers 
along the message path in different communication levels. 
mlognP model is formalized as follows using six parameters: 

m: the number of different communication levels. 
Typically for three communication levels: intra-CMP, inter-
CMP and inter-node. Non-uniform memory hierarchy and 
large-scale cascading network may bring more 
communication levels.  

l: the effective latency, defined as the length of time the 
processor is engaged in the transmission or reception of a 
strided or non-contiguous message over and above the cost 
of a non-strided or contiguous transfer. 

o: the overhead, defined as the length of time the 
processor is engaged in the transmission or reception of a 
non-strided or contiguous message.  

g: the gap, defined as the minimum time interval between 
consecutive message receptions at a processor. Without 
resource contention, assuming this parameter has no impact 
on communication cost, effectively using o = g.

n: the number of implicit transfers along the message 
path in different communication levels. 

135135

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 10, 2009 at 05:22 from IEEE Xplore.  Restrictions apply. 



P: the number of processes or processors. 

B. 2log{2,3}P Model 
For simplicity and practical use, 2log{2,3}P model is 

proposed to simplify mlognP model. In 2log{2,3}P model, we 
assume two communication levels (m=2): intra-node and 
inter-node. We ignore the inter-CMP communication, 
because of awkward performance and poor scalability of 
CMP interconnection. The intra-node communication has 
n=2 points of implicit communication without network 
transfer, while inter-node communication has n=3 points of 
implicit communication. Because of distinct memory 
communication costs (middleware costs) in different 
communication levels, the point-to-point communication 
cost in 2log{2,3}P model will be estimated over again. 

For m=2 and n=2 or 3, Equation (3) is reformulated as  

)2,0( ��� nolo netmwmw

for intra-node communication 

)3(''' ��� nolo netmwmw
�
�
�

��


�

�T

for inter-node communication 

    (4) 

We use the function f(s,d) to rewrite Equation (4) as 

00 ),(2)1,(2 dsfsf �
for intra-node communication 

100 )1,('),('2)1,('2 sfdsfsf ��
�
�
�

��


�

�T

for inter-node communication 

(5)

For the same message size and stride, the middleware 
communication costs (f(s,1)0 and f'(s,1)0, f(s,d)0 and f'(s,d)0)
between intra-node and inter-node communications are 
distinct. Differently from log3P model expressed by Equation 
(3), 2log{2,3}P model expressed by Equation (4) and (5) 
discloses not only vertical memory hierarchy, but also 
horizontal memory hierarchy on multi-core clusters. 

IV. PERFORMANCE EVALUATION

Since the importance of memory communication as to 
vertical memory hierarchy in point-to-point communication 
has been verified in previous work [4, 5], our objective will 
verify that the effects of horizontal memory hierarchy on 
point-to-point communication on multi-core clusters should 
adequately be considered. Furthermore, we will verify 
2log{2,3}P model is more suitable for multi-core clusters than 
log3P model. 

Our evaluation system consists of eight nodes connected 
by Gigabit Ethernet. Each node is equipped with two sets of 
quad-core 2.0GHz Intel Xeon processor, i.e. eight computing 
cores per node. Four cores on the same chip share 8M L2 
cache. The operating system is Linux 2.6, MPI version is 
mpich2-1.0.6p1.  Without loss of generality, we only select 
strided message to measure performance, because strided 
message must be packed into a contiguous buffer (like non-
strided message), and then sent across memory or network to 
its destination. In the following tests, message size is 

classified as 1Kbyte, 4Kbyte and 16Kbyte and message 
stride is classified as 8byte, 64byte and 512byte. Messages 
greater than 16Kbyte are not considered, because handshakes 
or acknowledgements are required for long messages. A 
strided message is expressed as “*K*S”, as shown in the x-
axis in the following figures. For example, “4K8S” means 
that message size is 4Kbyte and message stride is 8byte. 

A. Middleware costs of Point-to-Point Communication 
We use blocking MPI_Send and MPI_Recv calls to get 

roundtrip times (RTT) so as to measure memory 
communication costs, which is suggested by related papers 
[4, 10, 11]. Firstly, we use PRTT method [11] to get the 
network overhead (o'net) of inter-node communication. 
Subsequently, we begin by obtaining the roundtrip times of 
contiguous and non-contiguous message transfers for intra-
node communication and inter-node communication. 
According to Equation (4) and (5), there are the following 
equations to get individual middleware and network costs: 

RTT(s)=2omw (contiguous transfers for intra-node point-
to-point communication) and  

RTT(s,d)=2(omw+lmw) (non-contiguous transfers for intra-
node point-to-point communication);  

RTT'(s)=2(o'mw+o'net) (contiguous transfers for inter-node 
point-to-point communication) and  

RTT'(s,d)=2(o'mw+l'mw+o'net) (non-contiguous transfers 
for inter-node point-to-point communication). 

Fig. 2. Middleware costs of point-to-point communication on a multi-core 
cluster. The x-axis is message size and stride and y-axis is time in 
microseconds 

Figure 2 shows middleware costs of point-to-point 
communication on our evaluation system. The left portion is 
the intra-node communication; the right one is the inter-
node communication. From the figure, we can see 
middleware overhead (omw or o'mw) and middleware latency 
(lmw or l'mw) increase with message sizes and message strides, 
and middleware latency dominates memory communication 
costs with increased message sizes and message strides. For 
the same message, middleware overhead of intra-node 
communication is on average 49.2% less than that of inter-
node communication; The difference of middleware 

136136

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 10, 2009 at 05:22 from IEEE Xplore.  Restrictions apply. 



latencies between intra-node and inter-node communication 
is small when message size and stride are small, but the 
largest difference of middleware latencies is approaching 
87.9% with increased message sizes and strides; The whole 
middleware cost (middleware overhead plus latency) of 
intra-node communication is on average 41% less than that 
of inter-node communication. Thus it can be seen that the 
difference of middleware costs between intra-node and 
inter-node communications on the multi-core cluster is 
prominent, and it is indispensable to incorporate horizontal 
memory hierarchy into analytical models. 

B. Cost prediction of Collective Communication 
In this section, we use 2log{2,3}P model to analyze 

common collective communication algorithms, linear 
broadcast algorithm and binomial tree broadcast algorithm, 
compared with log3P model. 

The linear broadcast algorithm is based on point-to-point 
communication and used to broadcast the message from the 
first process in a group to all other processes, in which (P-1)
individual consecutive MPI_Sends are used at the 
source/root process to transfer data to each remaining 
process, where P is the number of processes. In all our 
experiments, we use sched_affinity system call to ensure the 
binding of process with processor.  

Using log3P, the cost of the linear broadcast algorithm is 
P*( o'mw /2+l'mw/2)+o'net, where P*( o'mw /2+l'mw/2) is the 
middleware overhead and middleware latency occurring at 
the source process for sending data to other (P-1) processes, 
and o'net is the network overhead.  

Using 2log{2,3}P model, the cost of the linear broadcast 
algorithm is divided into intra-node and inter-node, 
expressed as (P/n-1)*(omw /2+lmw/2) +(P-(P/n-1)-1)*(o'mw

/2+l'mw/2)+ o'net n is the number of nodes, assuming all 
intra-node communication are started at first. 

Figure 3 shows costs predicted by log3P and 2log{2,3}P
models and measured cost for the linear broadcast algorithm, 
respectively. The size of the linear broadcast algorithm in 
Figure 3 is 64 processes (8 processes per node). 

Fig. 3. Cost prediction of the linear broadcast (8*8=64 processes). The x-
axis is message size and stride and y-axis is time in microseconds. 

The binomial tree broadcast algorithm is commonly used 
in MPICH. In the first step, the root sends data to process 
(root + P/2). This process and the root then act as new roots 
within their own subtrees and recursively continue this 
algorithm (P denotes the number of processes). This 
communication takes a total of log2P steps (the height of the 
tree).

Therefore, the times taken by the binomial tree broadcast 
algorithm are (o'mw+l'mw+o'net)*log2P (Using log3P) and 
(omw+lmw)*n+ (o'mw+l'mw+o'net)*( log2P-n) (Using 2log{2,3}P,
n denotes the number of intra-node transfers along the 
longest distance to a leaf node in log2P steps and its value is 
determined by the location of the root).

Figure 4 shows costs predicted by log3P and 2log{2,3}P
models and measured cost for the binomial tree broadcast 
algorithm, respectively. The size of the binomial tree 
broadcast algorithm in Figure 4 is 64 processes (8 processes 
per node). 

Fig. 4. Cost prediction of the binomial tree broadcast (8*8=64 processes). 
The x-axis is message size and stride and y-axis is time in microseconds.

From Figure 3 we can see that 2log{2,3}P prediction is 
more accurate than log3P for all measured message sizes and 
message strides. For the data points measured, maximum 
relative error of log3P is 15.32% and average relative error 
is 5.64%; while the maximum relative error of 2log{2,3}P is 
3.61% and average relative error is 1.59%.  

From Figure 4 we can see that for small message sizes 
and small strides, log3P prediction is accurate, but for large 
message sizes and larger strides, 2log{2,3}P prediction is 
more accurate than log3P. For the data points measured, 
maximum relative error of log3P is 10.53% and average 
relative error is 4.68%; while the maximum relative error of 
2log{2,3}P is 4.36% and average relative error is 2.03%. 

Otherwise, from Figure 3 and 4 we can see that log3P
prediction consistently over-estimates the communication 
time, because it overlooks high-efficient intra-node 
communication. With the increased message sizes and 
message strides, the error of log3P prediction increases; 
while 2log{2,3}P prediction does not follow this trend. In a 
word, the results in Figure 3 and 4 show that 2log{2,3}P

137137

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 10, 2009 at 05:22 from IEEE Xplore.  Restrictions apply. 



model is more suitable for communication evaluation on 
multi-core clusters than log3P model. 

V. RELATED WORK

In recent years, many models have been proposed to 
predict and evaluate distributed communication 
performance. Previous work modeling either interconnect 
performance or memory hierarchy performance may be 
classified as hardware-parameterized models and software-
parameterized modes. 

Hardware-parameterized models ignore the increasing 
effects of middleware on communication cost. LogP model 
[12] approximate memory communication in parallel 
systems with a fixed overhead parameter (o), the reciprocal 
of the bandwidth between application and network buffers. 
LogGP [13] is an extension of the LogP model that 
additionally allows for large messages by introducing the 
gap per byte parameter, G and ignores the effects of data 
distribution. There are also other varieties of LogP model, 
such as PLogP [10, 14], LoPC [15], LoGPC [16], LoGPS 
[17] and so on, they have more or less ignored important 
effects of memory communication. 

With the ever increasing speed gap between the CPU and 
memory systems, incorporating memory hierarchy into 
computational models has become unavoidable. The 
Hierarchical Memory Model (HMM) [18] applies the 
characteristics of memory hierarchies to network 
communication, but ignores the network attributes common 
to parallel and distributed systems. Memory logP model [3] 
uses parameters to describe the cost effects of message size 
and distribution when message passes through memory. 
Inspired by the memory logP model, lognP model and its 
reduction log3P model [4, 5] combine hierarchical memory 
performance with estimates of network communication cost, 
and accurately predict the performance of distributed point-
to-point communication. 

With the emergency of multi-core processors, memory 
hierarchy on multi-core clusters becomes more complicated. 
Apart from memory hierarchy in the vertical level, memory 
hierarchy in the horizontal level becomes more prominent. 
Above software-parameterized models, such as memory 
logP, lognP and log3P, only focus on vertical memory 
hierarchy. mlognP and 2log{2,3}P models provide a general 
abstract for vertical and horizontal memory hierarchies so as 
to accurately predict the performance of message passing on 
multi-core clusters. 

VI. CONCLUSIONS AND FUTURE WORK

Differently from conventional SMP clusters, horizontal 
memory hierarchy on multi-core clusters behaves more 
prominent, interweaved with vertical memory hierarchy. 
Vertical memory hierarchy implies overlooked memory 
communication costs of point-to-point message passing 
varied with different message sizes and message strides, 
whereas horizontal memory hierarchy implies distinct 
performance of point-to-point message passing among 

different communication levels on multi-core clusters. 
Derived from lognP and log3P models, new analytical 
models mlognP and 2log{2,3}P unitedly abstract vertical and 
horizontal memory hierarchies for message passing on 
multi-core clusters. Some results of performance evaluation 
show that it is indispensable to incorporate horizontal 
memory hierarchy into new analytical models, and 
2log{2,3}P model can predict communication costs for 
message passing on multi-core clusters more accurately than 
log3P model. 

Our models are general and applicable to current multi-
core clusters. Though model analysis and evaluation in this 
paper take the example of Intel system with shared L2 cache, 
the same is suitable for AMD multi-core platforms, because 
of the same characteristics of memory hierarchy. Moreover, 
it is our current work to use mlognP and 2log{2,3}P models to 
analyze and find optimized solutions for multi-core aware 
MPI collective operations, which is the key to obtaining 
good performance speed-ups for many parallel applications 
since MPI programming has still been the mainstream in 
parallel computing before the emergence of new 
programming paradigms suitable for multi-core platforms in 
the future. Otherwise, multi-core processors also complicate 
hierarchical parallelization, so our work may require 
extension (e.g. OpenMP, multi-threaded programming 
model [19]) in the future. 

ACKNOWLEDGEMENT

This work is supported by the National High Technology 
Research and Development Program of China (Grant No. 
2006AA01A102). 

REFERENCES

[1] TOP500 Team, TOP500 Report for November 2007, 
http://www.top500.org.  

[2] Amith R. Mamidala, Rahul Kumar, Debraj De, D. K. Panda, MPI 
Collectives on Modern Multicore Clusters: Performance 
Optimizations and Communication Characteristics, 8th IEEE 
International Conference on Cluster Computing and the Grid  
(CCGRID '08), 2008. 

[3] K. W. Cameron and X.-H. Sun, "Quantifying Locality Effect in Data 
Access Delay: Memory logP," in proceedings of IEEE International 
Parallel and Distributed Processing Symposium (IPDPS 2003), Nice, 
France, 2003. 

[4] Kirk W. Cameron, Rong Ge, Predicting and Evaluating Distributed 
Communication Performance, Proceedings of the 2004 ACM/IEEE 
Supercomputing Conference, 2004. 

[5] Kirk W. Cameron, Rong Ge, Xian-He Sun. lognP and log3P:
Accurate Analytical Models of Point-to-Point Communication in 
Distributed Systems. IEEE TRANSACTIONS ON COMPUTERS, 
MARCH 2007: VOL. 56, NO. 3: 314-327. 

[6] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro etc. The 
Landscape of Parallel Computing Research: A View from Berkeley. 
Electrical Engineering and Computer Sciences, University of 
California at Berkeley. Technical Report No: UCB/EECS-2006-183, 
2006, 12. 

[7] Lei Chai, Qi Gao, Dhabaleswar K. Panda. Understanding the Impact 
of Multi-Core Architecture in Cluster Computing: A Case Study 
with Intel Dual-Core System. Seventh IEEE International 

138138

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 10, 2009 at 05:22 from IEEE Xplore.  Restrictions apply. 



Symposium on Cluster Computing and the Grid (CCGrid'07), pp. 
471-478, 2007. 

[8] Sadaf R. Alam, Richard F. Barrett, Jeffery A. Kuehn, Philip C. Roth, 
Jeffrey S. Vetter, Characterization of Scientific Workloads on 
Systems with Multi-Core Processors, In International Symposium on 
Workload Characterization, 2006. 

[9] J. Liu, J. Wu, and D. K. Panda. High Performance RDMA-Based 
MPI Implementation over InfiniBand. Int’l Journal of Parallel 
Programming, 2004. 

[10] Thilo Kielmann, Henri E. Bal. Fast Measurement of LogP 
Parameters for Message Passing Platforms. Proceedings of the 15 
IPDPS 2000 Workshops on Parallel and Distributed Processing, 
2000: 1176-1183. 

[11] Torsten Hoefler, Andre Lichei, and Wolfgang Rehm, Low-Overhead 
LogGP Parameter Assessment for Modern Interconnection Networks, 
in proceedings of IEEE International Parallel and Distributed 
Processing Symposium (IPDPS'2007). 

[12] D.E. Culler, R. Karp, D.A. Patterson, A. Sahay, E. Santos, K. 
Schauser, R. Subramonian, and T. von Eicken, “LogP: A Practical 
Model of Parallel Computation,” Comm. ACM, vol. 39, pp. 78-85, 
1996. 

[13] A. Alexandrov, M. F. Ionescu, K. Schauser, and C. Scheiman, 
"LogGP: Incorporating Long Messages into the LogP model," in 

proceedings of Seventh Annual Symposium on Parallel Algorithms 
and Architecture, pp. 95-105, Santa Barbara, CA, 1995. 

[14] Jelena Pjesivac-Grbovic, Thara Angskun, George Bosilca, Graham E. 
Fagg, Edgar Gabriel, Jack J. Dongarra, Performance Analysis of 
MPI Collective Operations, Proceedings of the 19th IEEE 
International Parallel and Distributed Processing Symposium 
(IPDPS'05), 2005 

[15] M. I. Frank, A. Agarwal, and M. K. Vernon, "LoPC: Modeling 
Contention in Parallel Algorithms," in proceedings of Sixth 
Symposium on Principles and Practice of Parallel Programming, pp. 
276-87, Las Vegas, NV, 1997. 

[16] C. A. Moritz and M. I. Frank, "LoGPC: Modeling Network 
Contention in Message-Passing Programs," in proceedings of 
SIGMETRICS'98, pp. 254-63, Madison, WI, 1998. 

[17] F. Ino, N. Fujimoto, and K. Hagihara, "LogGPS: A Parallel 
Computational Model for Synchronization Analysis," in proceedings 
of PPoPP'01, pp. 133-42, Snowbird, Utah, 2001. 

[18] B. Alpern, L. Carter, E. Feig, and T. Selker, "The Uniform Memory 
Hierarchy Model of Computation," Algorithmica, 12 (2/3), pp. 72-
109, 1994. 

[19] Matthew Curtis-Maury, Xiaoning Ding, Christos D. Antonopoulos 
and Dimitrios S. Nikolopoulos, An Evaluation of OpenMP on 
Current and Emerging Multithreaded/Multicore Processors. In 
IWOMP, 2005. 

139139

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on October 10, 2009 at 05:22 from IEEE Xplore.  Restrictions apply. 


