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Abstract 
 

The complexity of the cluster-based web service 
challenges the traditional approaches, which fail to 
guarantee the reliability and real-time performance 
required. In this paper, we present an Integrated 
Adaptive Management System (IAMS) for such service. 
The issues we discuss address to efficiently allocate 
resources and provide more effective QoS support 
under a wide range of load conditions.  For the global 
resource level, we introduce spare instance and 
corresponding management strategy as a supplemental 
adaptive mechanism. The spare instances hosted on 
shared node afford better resource utilization and 
more effective QoS support in the case of overload or 
workload fluctuation. Further, it can relax the 
influence of the fault recovery from the hardware and 
software failure. For the local level, we apply a multi-
purpose linear-quadratic regulator (LQR) as basic 
adaptive element. The control scheme using reject time 
ratio as control input is able to provide guarantees for 
overload protection, resource control, Qos control, 
performance isolation, and effective management for 
spare instances.   

Results of experiments on both static and dynamic 
web sites illustrate the efficiency and robustness of the 
multi-purpose LQR. 
 
1. Introduction 
 

Over the last few years, cluster systems have been 
gaining in popularity for providing web service such as 
commercial sites, financial services, education sites 
and so on. The internet application differs from 
traditional parallel jobs in several ways. A significant 
challenge is the workloads for web services tend to be 
bursty and fluctuate dramatically. For example, the 
daily peak-to-average load ratio at Internet search 
service Ask Jeeves (www.ask.com) is typically 3:1 and 
the peak loads can be an order of magnitude larger than 
the average and unpredictable in the presence of 

extraordinary events. Over-provisioning system 
resources for a service site to accommodate the 
potential peak will not be cost-effective[1]. In addition, 
the web services require the service-level agreements 
(SLA), which guarantee reliability, availability, and 
quality of the service that the businesses pay for. 
Furthermore, multiple service classes may be hosted on 
shared nodes to afford better resource utilization, 
which introduces the issue of performance isolation.  

As an important and challenging topic, the adaptive 
mechanisms for managing cluster-based internet 
service have received wide attention in the research 
field. Some papers[2,3,4] address to dynamically 
allocate the cluster resources to guarantee contracted 
(SLAs). A few mechanisms have been proposed to 
support admission control[5,6,7,8]. Recently, control 
theory has been applied as an adaptive 
mechanism[9,10,11] in the context of web servers. For 
the limitation of space, we will not describe the related 
work in detail. 

Although cluster-based web services have been 
widely deployed we have seen limited research in the 
literature on comprehensive adaptive mechanism for 
resource management with QoS support.  

In this paper, we present an integrated adaptive 
management system (IAMS) for cluster-based web 
services. The main adaptive mechanisms in our system 
are:  

 The resource adaptation based on the SLA 
event-driven mechanism   

 A supplemental adaptive mechanism based on 
spare instances and the corresponding 
strategy.  

 A multi-purpose control scheme incorporated 
in the local manager and/or application is used 
as the basic adaptive element to provide 
guarantees for overload protection, resource 
control, Qos control, performance isolation 
and management for spare instances. 

The main contributions in our paper are the 
supplemental adaptive mechanism and the multi-
purpose control scheme, which provide more adaptive 
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QoS support and improve the performance of cluster 
based web services during overload or instance failure. 

The aim of our supplemental adaptive mechanism is 
to (1) provide additional resources for the service that 
is experiencing light overload; (2) offer temporary 
resources to the service which is enduring short-term 
severe overload and (3) supply a few shared resources 
for instance failure. As we know, in the case of light 
overload or short-term severe overload (the severe 
overload situation lasts in a short time) situation, 
simply rejecting excessive requests will lose customers 
and revenue of the websites, and overbooking 
resources is not a cost-effective way. Further, in the 
case of hardware or software failure or the SLA 
violation, the fault recovery may result in a gap of 
service. To resolve the above problems, our system 
provides an additional instance for the web service on 
few shared nodes. When encountered with the instance 
failure or overload, all or parts of requests will be 
redirected to the additional instance. The additional 
instance is the so-called spare instance. In this way, our 
system offer better resources utilization and improve 
the QoS performance for the web service on global 
resource level. The performance isolation in the shared 
node is also discussed in the paper. 

Second, the multi-purpose control scheme functions 
as the basic element, combined with the spare 
instances to enforce policies for interrelated metrics. 
Our controller provides further adaptation and is 
applicable to various applications without changing the 
source code.  

The features of our multi-purpose feedback control 
scheme are:  

(1) Use reject time ratio (RTR) as control variable. 
For multi-purpose, the control input should be 
capable of affecting a variety of performance 
metrics in a meaningful way. RTR, the rejection 
time interval in control period, is proved to be 
the right choice. 

(2) LQR based control design. Developing the 
controller based on the classical theory could 
not avoid the cumbersome trial and error 
approach. In addition, it is difficult to design 
MIMO system with classical theory. LQR 
approach based on modern control theory is 
directly performance oriented and can be used to 
design complex MIMO system easily. A QoS 
differential service scheme using multi-variable 
system is presented in the paper. Moreover, the 
input(s) in our scheme is closely related to the 
throughput which is an important QoS metric. 
LQR design approach offers negotiating trade-
off between the control object and the input(s)， 
which  can avoid too many requests rejected and 

keep a desired throughput. This is another 
important reason for employing LQR 

(3) System identification based modeling. By 
employing system identification, we obtain the 
service model without the knowledge of inner-
mechanism about the web services. Further, the 
model is on a per-system basis, which may be 
more accurate than that obtained by theoretical 
approach. 

For providing a full-scale evaluation, we present 
some experiments including overload protection, 
resource utility and QoS performance control both on 
Tomcat server and a 3-tiered web site. The results 
illustrate our multi-purpose control scheme can offer 
satisfied performance for both static and dynamic 
websites. The results also indicate the control 
mechanism can support QoS differential service. 

The cluster operating system prevails in that it is 
becoming more and more mature and abundant basic 
services have been provided. Our management system 
is implemented on the Dawning 4000A super server, 
which are the biggest cluster systems for scientific 
computing in China.  

The rest of this paper is organized as follows. 
Section 2, 3 introduce the architecture of IAMS and the 
SLA-based adaptive mechanisms briefly. Section 4 
discusses the spare instance and its management. The 
multi-purpose feedback control scheme and the 
implementation of QoS differentiated service are 
discussed in section 5. Section 6 and 7 present the 
experiment results on Tomcat and a 3-tiered web site 
to illustrate the efficiency of our control scheme 
respectively. Section 8 summarizes our work and 
discusses the future work. 
 
2. IAMS architecture 
 

IAMS architecture features a hierarchical design 
with multiple tiers. Being the first tier, global resource 
manager focuses on adaptation properties of the global 
computing environment. The global manager selects 
corrective actions when a service level threshold is 
exceeded or when server failures occur. The second 
tier is local manager, which maintains system-wide 
properties of a single server, such as adaptation agility, 
system utility, or the fairness between the independent 
applications. Besides launching and terminating the 
applications as the global manager instructs, the local 
manager performs the resource allocation. The third 
tier is a feedback control system and formed by the 
service instance, the controller and the detect agent. 
This tier focuses on application-specific adaptation 
choices and meets the needs of individual applications. 
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A broad architecture overview is given in Fig. 1. A、B
、D each represents an application. 

The detector agent is a basic service provided by the 
Dawning 4000A. Detect agent local to each server 
collects the application resource utility and the 
performance metrics. Besides, the detect agent issues 
the meta-event when the system resource metric or the 
service level threshold is exceeded.  

 
Fig. 1.  IAMS architecture 

On the right hand of the Fig. 1, there are some spare 
nodes specialized for the spare resource pool. While 
the application starts up, an additional instance which 
is called spare instance is also started in the spare 
resource pool simultaneously. If the corresponding 
master instance fails or the SLA violation occurs, 
requests are redirected to the spare instance. The 
details of the spare instances will be explained in 
section 5. 

 
3. Adaptive resource scheduling 
 

The global and local resource managers perform the 
resource scheduling all together. Dynamic resource 
configuration provides scalability, high-availability, 
increased fault tolerance, when encountered with the 
server failure, the change of the SLA requirement, etc. 
 
3.1. SLA-Based global resource manager 
 

The global resource manager is event driven. When 
a service level threshold is exceeded, or server failures 
occur, an event will be sent to the global manager. 
Then the unit may choose a proper actions include 
modifying server-set assignments, throttling incoming 
request streams, initiating recovery actions, and issuing 
Administrator alerts. 

The preferred remedies to the given problem are 
listed in detail: 

1. On detecting the server failure, the warnings 
are issued to the global manager. For every 
service instance on that server, the global 
scheduler inquires the resource configuration 
database about other potential server, which 

could offer the same type of service. If any is 
found, the original instance will be migrated 
to the new server, and the IP sprayer 
automatically will bind with new instance. In 
addition, when the fault recovery procedure is 
in process, part of the requests will be 
redirected to the spare instance to avoid the 
service breakdown and the decline of SLA. 

2. The global manager will instruct the 
corresponding local manager to restart the 
instance, once the service instance crashes or 
behaves abnormal. Also the requests will be 
sent to the spare instance during the fault 
recovery. 

3. On detecting the SLA violation, the warnings 
are issued to the manager and penalties as 
stated in the SLA are collected. Some requests 
are redirected to the spare instance instantly. 
A timeout event will be sent if the spare 
instance exceeds the time limit. The manager 
then determines the spare instance as the 
long-term overload, and reassigns an 
underutilized server to launch a new instance. 
On the other hand, the manager may cut down 
a running instance, if the load is rather light. 

4. In another scenario, the SLAs with a 
component service are not violated. But, in 
order to keep up with the demand of its 
customers, who requires a higher level of 
service, the global manager dynamically 
negotiates a new SLA (i.e. different attributes, 
perhaps at an increased cost). 

5. On detecting the resource capacity change 
(for example, a new server is added to the 
cluster), the global manager updates the 
configuration database. 

6. When a resource allocation request is 
accepted, the manager pre-allocates servers 
and other global resources based on SLA 
requirements. It reclaims the resources if the 
application terminates. 

In addition, the global resource manager 
provides interface for the customized policy. 

 
3.2. Local resource management 
 

Local manager combined with detector agent and 
resource controller(s) provides local resources 
management. The resource controller(s) (or application 
controller) can achieve overload protection, 
performance guarantees, and service differentiation in 
the presence of load unpredictability. Further, it 
ensures performance isolation for shared node. 
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The local manager is the link between the global 
resource manager and the service instance. The main 
functions are listed below: 

Fig. 2. Local Manager and control loop 
 The local manager launches and terminates the 

instance and the corresponding controller 
according to the instruction of the global manager 

 In order to control the application resource and 
guarantee the application performance, the local 
manager sets the set point of the controller shown 
in Fig. 2. In IAMS, the set point may be the 
resource quota or the contracted performance 
limit. The set point can be modified during the 
life cycle. 

 The local manager sends an event-driven signal to 
global manager when the SLA violation occurs. 

 
4. Spare instances and schedule strategy 
 
4.1. Spare instance  

On detecting the hardware or software failure or the 
SLA violation, the traditional policy adopted is 
choosing a free server to recover or replicate the 
service instance. However, for the server failure it may 
bring on a gap of service during the fault recovery. For 
the SLA violation caused by workload surge, it may 
result in frequent instance start/stop and unnecessary 
system overhead. Moreover, the fluctuating workloads 
always cause service in light overload state, which 
would lead to performance drop.  

Hence, we introduce an additional instance to which 
the requests will be immediately redirected, in case of 
the related service failure or overload. The additional 
instance launches as soon as the related service starts 
up and has same life-cycle with this application. The 
additional instance is just the spare instance, while the 
other common instance of the service is called the 
master instance. Since only a part of web services may 
be overloaded and few will be serious at a time, spare 
instances for different service can be allocated on a 
shared node for making better use of system resource. 
The shared node on which spare instances host is 
called spare node. 

As afore-mentioned, our aim is to provide addition 
resources for the lightly overloaded services and offer 
temporary resources for the service that is being short-

term severe overload or instance failure, in the term of 
supplying few shared resources (spare nodes). We 
should guarantee the fairness and resource availability 
in the spare node, thus none of the spare instance is 
allowed to occupy excessive resource for long term. 
IAMS defines a quota limit for every spare instance. 
The quota is set evenly or according to their weights. 

Three spare instance states are defined according to 
the resource utilization during the run time: 

SPARE: the basic state of the spare instance, in 
which no requests are redirected to the instance and the 
instance consumes little resource.   

NORMAL: The instance is marked as NORMAL 
when its resource consumption is below the quota 
limits.  

EMERGENT: The instance is placed into 
EMERGENT when the resource consumption exceeds 
the quota limit. It is a temporary state. 

Both of the EMERGENT and NORMAL state are 
working state. 
 
4.2. Spare node manager 
 

The structure of spare node is similar to other node, 
but a resource utility based controller must be 
embedded in every spare instance to ensure 
performance isolation. Spare node manager is a special 
local manager. The additional responsibilities are: 

Dynamically allocate and set the reference 
(resource utility) for spare instance controllers 
according to the number of working instances and their 
workloads in the spare node, so as to afford higher 
resource utilization and performance isolation. The 
reference value could be larger than its quota. A single 
spare instance can even occupy almost whole node 
resources temporarily, if no other instance is working. 

Spare instance is allowed to occupy the excessive 
resource in a short time because of severe overload. 
But if the time is out, the local manager will set the 
controller reference to its quota, imposing the resource 
utility reduced to its quota. Meanwhile, the local 
manager will send an event to the global manager 
asking more resources for the corresponding service. 
 
4.3. Spare instance state transition 
 

Originally the spare instance is in SPARE state. 
When the master instance fails or server overload 
occurs, some requests are redirected to the spare one, 
which leads to the state transition. And whether the 
state changes to NORMAL or EMERGENT depends 
on the resource occupied. Further, the instance in 
NORMAL state may transfer to EMERGENT if the 
situation is even worse. Similarly, the instance may 
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transfer from EMERGENT state to NORMAL or 
SPARE if the fault recovers or the overload disappears. 
All the resource is freed when the state finally returns 
to SPARE. Sometimes the situation may not turn better 
for a long time and excessive resources keep occupied. 
To assure the availability of the spare resources, we 
limit the interval that the instance can be in 
EMERGENT state. In breach of the time limit, it will 
be imposed to NORMAL by the local manager. Fig. 3 
gives state transition diagram. 

Fig. 3. State transition diagram of spare instance 
We have made a simple comparison. In our system 

the elapsed time of putting the spare instance into use 
is about 0.12 sec, while the time taken for the 
traditional policy is 1.05 sec for the Apache service 
and for Oracle 10g it is 7.69 sec.  

In summary, the spare node(s) contributes to a spare 
resource pool. In the case of the master instance’s 
failure, the spare instance avoids service breakdown 
and the decline in SLA, it improves the fault tolerance 
and contributes to provide non-stop service. For short 
term severe overload, the available resource could be 
enlarged instantaneously, much quickly without 
launching a new instance temporarily. And it can 
supply additional resource when slightly overloaded 
for a long time. By introducing the spare instance, the 
adaptive capacity of the application would be greatly 
improved in the case of overload and the workload 
surge. 
 
5. The basic adaptation element —— 
multi-purpose control scheme 
 

In this section we discuss the design and 
implementation of the multi-purpose feedback control 
scheme. In the end of this section, we extend it to 
implement QoS differential service. 
   The multi-purpose control scheme using reject-time-
ratio (RTR) as control input is shown in Fig. 4. In this 
figure, the output is performance metric measured 
periodically by the detector and reference is the desired 
value of output. The scheme consists of LQR, AC 
actuator and the web service itself. The actuator is 
responsible for rejecting or redirecting incoming 
requests in rejection time interval according to the RTR 
given by the LQR. The LQR produces optimal control 
signal RTR, so as to ensure the output meet the desired 

value and make suitable trade-off between 
performance error and the throughput.  

 
Fig. 4. Block diagram of control scheme 

As RTR can affect a variety of performance metrics 
in a meaningful way, this scheme can be used as multi-
purpose controller. When regarding resource utility as 
the output, it would be a resource utility based 
controller which can be used to prevent overload or 
performance isolation. In other case, when stressing on 
a specified performance metric or lacking of the 
knowledge of the bottleneck of resources, the 
performance metric, such as throughput, response time 
should be used as output and then it could be a QoS 
metric based controller aiming to control QoS metric. 
 
5.1. Admission control using reject time ratio 
 

Admission control is an effective technique to afford 
QoS support under overload condition. The idea is 
reducing the amount of work required when faced with 
overload by dropping a portion of the requests. By this 
way, the server can service the accepted requests faster 
and meet the QoS performance. However, dropping too 
many requests would cause revenue loss.  An online 
feedback based admission control scheme is illustrated 
in Fig. 4. A controller periodically takes resource 
utility of the node (bottleneck for service) or 
performance measurements of the Web service from a 
detect agent, compares it with the reference (desired 
value), and adjusts the admitting probability (P) to 
meet the control goal. The changes to the admitting 
probability can be actuated through an admission 
control (AC) module. Through the AC module, a 
request is being accepted with probability Pa, and 
being dropped with probability Pd = 1-Pa [12]. Based 
on the fact of the ratio of the time for rejecting requests 
to the control period (Reject Time Ratio) is 
proportional to drop probability Pd, it is used as an 
input for admission control in our system. 

We define reject time ratio as follows 
RTR = rjtt / ctrlT             (1) 

where Tctrl  is the control period. trjt is the time interval 
in which all requests are rejected, and in the left time, 
requests are admitted.  

If in rejection time interval, only the requests of new 
sessions are rejected or redirected to keep the session 
integrity, it would be a session based admission control 
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applied for the session based applications such as 
commercial services. 
 
5.2. Modeling 
 

The dynamic model, that describes the mathematical 
relationship between input(s) and output(s), is the basis 
for controller design. For lack of detailed knowledge 
about the inner workings of the web service, we adopt 
system identification approach to establish the models. 
The open-loop service is modeled as a difference 
equation with unknown parameters. Then we stimulate 
the web service with pseudo-random signal as inputs 
and sample output data. After collecting the data, the 
least square estimation of model parameters can be 
solved via MATLAB. 

 
5.2.1. Model structure. Difference equation with 
unknown parameters is a common used dynamic 
model. In most cases the first order or second order 
Difference model is exact sufficiently. We adopt first 
order difference equation 

)1k(bu)1k(ay)k(y −=−+    (2) 
to describe the web service.  
 
5.2.2. Input signal. The input signal should be 
persistently exciting to satisfy the identifiable 
condition. Pseudo-random digital white noise and 
pseudo-random binary sequence (M-sequence) have 
been widely used for system identification. In our 
experiments, M-sequence is used as input signal to 
randomly switch RTR . 
 
5.3. Linear quadratic optimal design 
 

To design linear quadratic optimal controller, state 
equations are required to describe the control system. 
A state representation and state feedback equation are 
shown as (3) and (4) respectively. 

)1k(Bu)1k(Ax)k(x −+−=      (3) 
)k(Kx)k(u =                                   (4) 

Here, x(k), u(k) is state vector and control vector at 
instant k correspondingly, K is control gain matrix. The 
aim of controller design is to find the proper gain 
matrix K to minimize the cost function (5) 
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Q is a positive semi-definite state weight matrix, and R 
is the control weight matrix which is positive definite. 
Q and R are usually diagonal matrices. This approach 
involves following main steps. 

(1) Select state variables and obtain state equations 
for the system. The state variable should be relative to 
performance metric. 

(2) Determine weight matrices Q and R to get 
satisfied trade-offs among different states (performance 
metrics) and the magnitude of inputs. A basic principle 
for selecting weight matrix is: the more important the 
state, the larger the weight. 

(3) Solve the Riccati equation to determine the 
optimal control gain matrix. 
    (4) Check whether the stability and dynamic 
character of the close loop system are satisfied. If not, 
repeat step (2). 

The main problem for LQR design is to select state 
variables and weight matrices carefully. 
 
5.4. Implementation of the controller 
 
5.4.1. Selection for state variables. Assume that the 
open loop model has already been obtained and shown 
as (2). Since the close loop system works as Fig. 4, we 
select the states as  

[ ]T21 )k(x),k(x)k(x =  

)k(e)k(x1 = , ∑
=

=
k

1j
2 )j(e)k(x  (6) 

Thus, the control input rtr (reject time ratio) would be 
)1k(xk)1k(xk)k(rtr 2211 −+−=  (7) 

The corresponding cost function is 

[ ]∑
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The state equation translated from difference equation 
(2) is shown as (9). 
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5.4.2. Selection for weight matrices. As the transient 
error is more important than accumulate error, and the 
input rtr is direct proportion to the rejected requests, 
too smaller weight for it would result in excessive 
reduction of throughput which is an important 
performance metric. We select a larger weight for state 
x1 (transient error), and same weight for x2 and rtr, then 
we find the optimal control gain using MATLAB. If 
the stable and dynamic indexes are satisfied, the 
controller has been designed successfully. 
 
5.5. Extending the controller to differentiated 
service 
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In this paragraph we discuss how to extend our 
controller designed by LQ optimal approach to support 
service differentiation. We consider three classes of 
quality of services. All clients are classified into VIP, 
premium and basic classes. The requests from VIP 
(few clients with the highest priority) will never be 
rejected, i.e. the RTR for VIP is zero for ever. The 
premium client who has the middle priority gets better 
quality of services than the basic one. The percentage 
of premium requests or sessions that completed 
successfully should be far more than that of basic 
during overload. That means the RTR of basic should 
be (much) larger than that of premium. The 
differentiated service can be implemented by 
differentiated control. As we know, in the LQR design 
the trade-off between different inputs can be achieved 
by adjusting the weight matrix of inputs and in cost 
function (5), an input with a heavier weight would has 
a smaller control gain. Therefore we select a larger 
weight for the input of premium, then the control value 
for the premium is sure to be (far) less than that of the 
basic, and the throughput of premium would outweigh 
that of basic. A differentiated service control scheme 
based on above idea is shown in Fig. 5. 

 
Fig.5. Differentiated services control 

In this scheme, two LQ regulators are employed for 
controlling the premium and the basic requests 
respectively. The web service with two inputs and 
single output can be described with a MISO difference 
equation, which is expressed as 

)1k(ub)1k(ub)1k(ay)k(y 2211 −+−=−+ (10) 
The unknown parameter in (10) can be achieved by 
system identification and the state representation can 
be translated from (10). Selecting appropriate weight 
for Q and R in cost function (5), satisfied QoS 
differentiated services can be obtained. By changing 
the weights in R, the completed percentage ratio of the 
two classes is tunable. An experiment of differential 
QoS service is presented in next section. 
 
6. Experimental results on Tomcat 
 

In this section, we provide some experiments 
including overload protection, resource utility and QoS 
performance control on Tomcat. Since most 

commercial web services are session based, all 
experiments are the session-based. 
 
6.1. Testbed 
 

The testbed consists of three Pentium IV computers 
as client running the workload generator. Tomcat 5.5 
runs on a Pentium III 500MHz, with 512MB RAM as 
server machine. All the machines run Linux Kernel 
2.4.21 and are connected through a LAN of 100Mb/s. 
In such circumstance, the capacity of Tomcat is less 
than 20sess/sec, for in that time the CPU utility is 
larger than 0.95. 
 
6.2. Workload 
 

The workload was generated by Httperf[13], a 
workload generator and performance measurement 
tool, which support to generate HTTP/1.1 requests and 
manage user sessions. We use a simulation model with 
following parameter: 

 The session length is exponentially distributed 
with a mean of 15, 

 A timeout — the time client waits for a reply 
before resending the request — is set to 10 
seconds, 

 Think time between the requests of the same 
session is exponentially distributed with a 
mean of 5 seconds, 

 The number of retries to resend the request 
after timeout is 1. 

Throughout this section, we consider a file mix as 
defined by SpecWeb99[14]. Since the web pages are 
all static page, a series of experiments in the workload 
can prove the adaptive effect for static website. 
 
6.3. Experiments for CPU utility based 
controller 
 
6.3.1. Overload Control. The CPU utility based 
controller is used in the experiment because CPU is the 
bottleneck of resources in our experiment environment. 
CPU utility is regarded as output and reference is set to 
0.9. The load-performance comparison given in Fig. 6 
indicates the throughput in completed session of 
augmented Tomcat keep in a higher level and the 
average response time maintains within an acceptable 
extent (82~133ms), when workload changes greatly. If 
the request is rejected, we send back a clear message of 
rejection to prevent clients from unnecessary retries. 
Since issuing an explicit rejection message incurs an 
additional load on web server, the throughput of 
augmented Tomcat is a little less than the max 
throughput of the original one.  
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Fig. 6(a). Comparison of throughput in completed sessions 

 
Fig. 6(b). Comparison of response time 

 
6.3.2. CPU utility control. In the experiments 
below, Tomcat and other applications run on the same 
server. The desired CPU utility of Tomcat is 50% 

Under a varying workload shown in Fig. 7(a), the 
result shown in Fig. 7(b) illustrates the CPU utility of 
the original Tomcat fluctuates with the load in a large 
scale, and that of the augmented Tomcat fluctuates 
around 0.5 with a mean of 0.49 and a mean square 
variance of 0.004. 

 
Fig. 7(a). Workload pattern 

 
Fig. 7(b). Comparison of CPU utilization 

 
6.4. Experiment for response time based 
controller 
 

In the experiment we set reference value 100ms. Fig. 
8 illustrates the average response time of augmented 
Tomcat bound at about 100ms. Even if the workload is 
high up to 40sess/s (about twice the capacity), the 
response time being 105ms is a little more than the 
desired value.  

Fig. 9(b) shows the response time of augmented 
Tomcat fluctuates near the 100ms under varying work-
load shown in Fig. 9(a), while that of original Tomcat 
changes with workload and is extremely greater. 

 
Fig. 8. Average response time comparison 

Fig. 9(a). Workload pattern 
 

Fig. 9(b). Response time control in fluctuating workload 
 
6.5. QoS differential service 
 

In this paragraph, we provide the result of QoS 
differential service experiment, applying control 
scheme shown in Fig. 4. For simplicity, only two 
classes (premium and basic) are considered. In this 
experiment, CPU utility based control is used and its 
reference is set to 0.9. The weight matrices are selected 
as Q=diag([1,0.1]),R=diag([0.1,0.001]), the weight of 
premium is 100 times of that of  basic. The premium 
client sends the requests at the same session rate as that 
of the basic client. Fig. 10 demonstrates the 
comparison of percentage of completed session. When 
in the normal load, the completed percentage are both 
close to 100%. As the load rises up, the percentage of 
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the premium descends slightly, but that of basic drops 
drastically. When the load reaches 40sess/s, the 
percentage of the premium is about 75% which is four 
times of that of the basic. The result indicates the 
control scheme can provide differentiated service 
effectively. By changing the weights of elements in R, 
the percentage ratio of the two classes is tunable.  

  
Fig. 10. Percentage of completed session 

 
7. Experimental results in 3-tiered web site 
 

To provide a full-scale evaluation of our multi-
purpose control scheme, this section will show some 
experiment results in a 3-tiered web site. The experi-
ments prove the control effect for dynamic website. 
 
7.1. Testbed 
 

The structure of our testbed is shown in Fig. 11. It 
consists of a client node and two server nodes. Each 
node is dual Opteron processor 1.5 GHZ, 2G RAM 
with Gigabit Ethernet connected point-to-point full 
duplex with the switch. One server node runs the Web 
server and application server software, while the other 
contains the database. The client node drives the 
system with the standard workload generator TPCW. 
All nodes run Red Hat Linux with the Linux kernel 
2.4.21. We use Apache v2.0 for the front-end Web 
server, Jakarta Tomcat v5.5.12 as the application 
server and MySQL v5.0.18 for the database server. The 
controller is place in the proxy. 

   
Fig. 11. Structure of 3-tiere web site 

 
7.2. Workload Generator  
 

We use TPC-W[15] for our e-commerce Web site 
testbed. It implements all functionalities that typical e-
commerce Web sites provide. A Java implementation 
of TPC-W from the PHARM group at the University 
of Wisconsin [16] is modified to make it compatible 

with the newest version of Tomcat and MySQL 
installed in our testbed. It implements all 
functionalities in TPC-W specification. The database is 
configured to contain 10,000 items and 288,000 
customers. Think time is exponentially distributed with 
a mean of 0.7 seconds and bounded at a maximum of 7 
seconds.  
 
7.3. Experimental result 
 

We present the results both of the CPU utility based 
overload control and the response time based control 
experiments on 3-tiered website. For the limitation of 
space we will not give detail description for them. The 
advantage and efficiency of the multi-purpose control 
scheme is obviously. 
 
7.3.1. CPU utility based overload control. In our 
experiment, the bottleneck of resources is the CPU 
utility of the database MYSQL. We use it as output 
and set the reference to 0.85. Fig. 12(a) and 12(b) is the 
throughput and response time comparison for the 
controlled and un-controlled 3-tiered web site. 

 
Fig. 12(a). Throughput comparison 

 
Fig. 12(b). Comparison for response time 

 
7.3.2. Response time based control. Here we present 
the results of two response time control experiments. 
Fig. 13 is for average response time control, and Fig. 
14 is for transient response time control under a 
varying workload. The setting value is 600ms. The 
results show the response time of controlled web site 
can track the setting value well. 
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Fig. 13. Comparison for average response control 

 
Fig. 14(a). Workload pattern 

 
Fig. 14(b). Controlled 3-tiered web site 

     
Fig. 14(c). Response time of un-controlled 3-tiered web site 

As shown, the control scheme can be flexibly 
configured to the dynamic website and achieve 
satisfied result. 
 
8. Conclusion and future work 
 

In this paper we present a SLA event-driven based 
integrated adaptive management system (IAMS) for 
cluster-based web services. The system introduces 
spare instances as a supplemental adaptive mechanism 
and a multi-purpose feedback control scheme as the 
basic element to enforce the policies for interrelated 
metrics. The controller provides flexible adaptation 
and can be extended to support QoS differentiated 
service. In addition it can be easily configured for 
various applications, without changing the source code. 

We have presented rich experiments including 
overload protection, resource utility and QoS 
performance control both on static and dynamic 

website. The results illustrate our multi-purpose 
control scheme can offer effective QoS differential 
service and satisfied performance. Now the controller 
as the adaptive element only provides throughput 
different-tiation. In the future, we will make attempts 
to improve the differential service, such as providing 
response time differentiation in more complicated 
environment. 
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