
1424403286/06/$20.00 ©2006 IEEE.

An Integrated Adaptive Management System for Cluster-based Web Services

Ying Jiang2, Dan Meng1, Chao Ren2, Jianfeng Zhan1
 1Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100039

2Graduate School of the Chinese Academy of Sciences, Beijing 100080
{ cylinder, md, renchao, jfzhan }@ncic.ac.cn

Abstract

The complexity of the cluster-based web service
challenges the traditional approaches, which fail to
guarantee the reliability and real-time performance
required. In this paper, we present an Integrated
Adaptive Management System (IAMS) for such service.
The issues we discuss address to efficiently allocate
resources and provide more effective QoS support
under a wide range of load conditions. For the global
resource level, we introduce spare instance and
corresponding management strategy as a supplemental
adaptive mechanism. The spare instances hosted on
shared node afford better resource utilization and
more effective QoS support in the case of overload or
workload fluctuation. Further, it can relax the
influence of the fault recovery from the hardware and
software failure. For the local level, we apply a multi-
purpose linear-quadratic regulator (LQR) as basic
adaptive element. The control scheme using reject time
ratio as control input is able to provide guarantees for
overload protection, resource control, Qos control,
performance isolation, and effective management for
spare instances.

Results of experiments on both static and dynamic
web sites illustrate the efficiency and robustness of the
multi-purpose LQR.

1. Introduction

Over the last few years, cluster systems have been
gaining in popularity for providing web service such as
commercial sites, financial services, education sites
and so on. The internet application differs from
traditional parallel jobs in several ways. A significant
challenge is the workloads for web services tend to be
bursty and fluctuate dramatically. For example, the
daily peak-to-average load ratio at Internet search
service Ask Jeeves (www.ask.com) is typically 3:1 and
the peak loads can be an order of magnitude larger than
the average and unpredictable in the presence of

extraordinary events. Over-provisioning system
resources for a service site to accommodate the
potential peak will not be cost-effective[1]. In addition,
the web services require the service-level agreements
(SLA), which guarantee reliability, availability, and
quality of the service that the businesses pay for.
Furthermore, multiple service classes may be hosted on
shared nodes to afford better resource utilization,
which introduces the issue of performance isolation.

As an important and challenging topic, the adaptive
mechanisms for managing cluster-based internet
service have received wide attention in the research
field. Some papers[2,3,4] address to dynamically
allocate the cluster resources to guarantee contracted
(SLAs). A few mechanisms have been proposed to
support admission control[5,6,7,8]. Recently, control
theory has been applied as an adaptive
mechanism[9,10,11] in the context of web servers. For
the limitation of space, we will not describe the related
work in detail.

Although cluster-based web services have been
widely deployed we have seen limited research in the
literature on comprehensive adaptive mechanism for
resource management with QoS support.

In this paper, we present an integrated adaptive
management system (IAMS) for cluster-based web
services. The main adaptive mechanisms in our system
are:

 The resource adaptation based on the SLA
event-driven mechanism

 A supplemental adaptive mechanism based on
spare instances and the corresponding
strategy.

 A multi-purpose control scheme incorporated
in the local manager and/or application is used
as the basic adaptive element to provide
guarantees for overload protection, resource
control, Qos control, performance isolation
and management for spare instances.

The main contributions in our paper are the
supplemental adaptive mechanism and the multi-
purpose control scheme, which provide more adaptive

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

QoS support and improve the performance of cluster
based web services during overload or instance failure.

The aim of our supplemental adaptive mechanism is
to (1) provide additional resources for the service that
is experiencing light overload; (2) offer temporary
resources to the service which is enduring short-term
severe overload and (3) supply a few shared resources
for instance failure. As we know, in the case of light
overload or short-term severe overload (the severe
overload situation lasts in a short time) situation,
simply rejecting excessive requests will lose customers
and revenue of the websites, and overbooking
resources is not a cost-effective way. Further, in the
case of hardware or software failure or the SLA
violation, the fault recovery may result in a gap of
service. To resolve the above problems, our system
provides an additional instance for the web service on
few shared nodes. When encountered with the instance
failure or overload, all or parts of requests will be
redirected to the additional instance. The additional
instance is the so-called spare instance. In this way, our
system offer better resources utilization and improve
the QoS performance for the web service on global
resource level. The performance isolation in the shared
node is also discussed in the paper.

Second, the multi-purpose control scheme functions
as the basic element, combined with the spare
instances to enforce policies for interrelated metrics.
Our controller provides further adaptation and is
applicable to various applications without changing the
source code.

The features of our multi-purpose feedback control
scheme are:

(1) Use reject time ratio (RTR) as control variable.
For multi-purpose, the control input should be
capable of affecting a variety of performance
metrics in a meaningful way. RTR, the rejection
time interval in control period, is proved to be
the right choice.

(2) LQR based control design. Developing the
controller based on the classical theory could
not avoid the cumbersome trial and error
approach. In addition, it is difficult to design
MIMO system with classical theory. LQR
approach based on modern control theory is
directly performance oriented and can be used to
design complex MIMO system easily. A QoS
differential service scheme using multi-variable
system is presented in the paper. Moreover, the
input(s) in our scheme is closely related to the
throughput which is an important QoS metric.
LQR design approach offers negotiating trade-
off between the control object and the input(s)，
which can avoid too many requests rejected and

keep a desired throughput. This is another
important reason for employing LQR

(3) System identification based modeling. By
employing system identification, we obtain the
service model without the knowledge of inner-
mechanism about the web services. Further, the
model is on a per-system basis, which may be
more accurate than that obtained by theoretical
approach.

For providing a full-scale evaluation, we present
some experiments including overload protection,
resource utility and QoS performance control both on
Tomcat server and a 3-tiered web site. The results
illustrate our multi-purpose control scheme can offer
satisfied performance for both static and dynamic
websites. The results also indicate the control
mechanism can support QoS differential service.

The cluster operating system prevails in that it is
becoming more and more mature and abundant basic
services have been provided. Our management system
is implemented on the Dawning 4000A super server,
which are the biggest cluster systems for scientific
computing in China.

The rest of this paper is organized as follows.
Section 2, 3 introduce the architecture of IAMS and the
SLA-based adaptive mechanisms briefly. Section 4
discusses the spare instance and its management. The
multi-purpose feedback control scheme and the
implementation of QoS differentiated service are
discussed in section 5. Section 6 and 7 present the
experiment results on Tomcat and a 3-tiered web site
to illustrate the efficiency of our control scheme
respectively. Section 8 summarizes our work and
discusses the future work.

2. IAMS architecture

IAMS architecture features a hierarchical design
with multiple tiers. Being the first tier, global resource
manager focuses on adaptation properties of the global
computing environment. The global manager selects
corrective actions when a service level threshold is
exceeded or when server failures occur. The second
tier is local manager, which maintains system-wide
properties of a single server, such as adaptation agility,
system utility, or the fairness between the independent
applications. Besides launching and terminating the
applications as the global manager instructs, the local
manager performs the resource allocation. The third
tier is a feedback control system and formed by the
service instance, the controller and the detect agent.
This tier focuses on application-specific adaptation
choices and meets the needs of individual applications.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

A broad architecture overview is given in Fig. 1. A、B
、D each represents an application.

The detector agent is a basic service provided by the
Dawning 4000A. Detect agent local to each server
collects the application resource utility and the
performance metrics. Besides, the detect agent issues
the meta-event when the system resource metric or the
service level threshold is exceeded.

Fig. 1. IAMS architecture

On the right hand of the Fig. 1, there are some spare
nodes specialized for the spare resource pool. While
the application starts up, an additional instance which
is called spare instance is also started in the spare
resource pool simultaneously. If the corresponding
master instance fails or the SLA violation occurs,
requests are redirected to the spare instance. The
details of the spare instances will be explained in
section 5.

3. Adaptive resource scheduling

The global and local resource managers perform the
resource scheduling all together. Dynamic resource
configuration provides scalability, high-availability,
increased fault tolerance, when encountered with the
server failure, the change of the SLA requirement, etc.

3.1. SLA-Based global resource manager

The global resource manager is event driven. When
a service level threshold is exceeded, or server failures
occur, an event will be sent to the global manager.
Then the unit may choose a proper actions include
modifying server-set assignments, throttling incoming
request streams, initiating recovery actions, and issuing
Administrator alerts.

The preferred remedies to the given problem are
listed in detail:

1. On detecting the server failure, the warnings
are issued to the global manager. For every
service instance on that server, the global
scheduler inquires the resource configuration
database about other potential server, which

could offer the same type of service. If any is
found, the original instance will be migrated
to the new server, and the IP sprayer
automatically will bind with new instance. In
addition, when the fault recovery procedure is
in process, part of the requests will be
redirected to the spare instance to avoid the
service breakdown and the decline of SLA.

2. The global manager will instruct the
corresponding local manager to restart the
instance, once the service instance crashes or
behaves abnormal. Also the requests will be
sent to the spare instance during the fault
recovery.

3. On detecting the SLA violation, the warnings
are issued to the manager and penalties as
stated in the SLA are collected. Some requests
are redirected to the spare instance instantly.
A timeout event will be sent if the spare
instance exceeds the time limit. The manager
then determines the spare instance as the
long-term overload, and reassigns an
underutilized server to launch a new instance.
On the other hand, the manager may cut down
a running instance, if the load is rather light.

4. In another scenario, the SLAs with a
component service are not violated. But, in
order to keep up with the demand of its
customers, who requires a higher level of
service, the global manager dynamically
negotiates a new SLA (i.e. different attributes,
perhaps at an increased cost).

5. On detecting the resource capacity change
(for example, a new server is added to the
cluster), the global manager updates the
configuration database.

6. When a resource allocation request is
accepted, the manager pre-allocates servers
and other global resources based on SLA
requirements. It reclaims the resources if the
application terminates.

In addition, the global resource manager
provides interface for the customized policy.

3.2. Local resource management

Local manager combined with detector agent and
resource controller(s) provides local resources
management. The resource controller(s) (or application
controller) can achieve overload protection,
performance guarantees, and service differentiation in
the presence of load unpredictability. Further, it
ensures performance isolation for shared node.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

The local manager is the link between the global
resource manager and the service instance. The main
functions are listed below:

Fig. 2. Local Manager and control loop
 The local manager launches and terminates the

instance and the corresponding controller
according to the instruction of the global manager

 In order to control the application resource and
guarantee the application performance, the local
manager sets the set point of the controller shown
in Fig. 2. In IAMS, the set point may be the
resource quota or the contracted performance
limit. The set point can be modified during the
life cycle.

 The local manager sends an event-driven signal to
global manager when the SLA violation occurs.

4. Spare instances and schedule strategy

4.1. Spare instance

On detecting the hardware or software failure or the
SLA violation, the traditional policy adopted is
choosing a free server to recover or replicate the
service instance. However, for the server failure it may
bring on a gap of service during the fault recovery. For
the SLA violation caused by workload surge, it may
result in frequent instance start/stop and unnecessary
system overhead. Moreover, the fluctuating workloads
always cause service in light overload state, which
would lead to performance drop.

Hence, we introduce an additional instance to which
the requests will be immediately redirected, in case of
the related service failure or overload. The additional
instance launches as soon as the related service starts
up and has same life-cycle with this application. The
additional instance is just the spare instance, while the
other common instance of the service is called the
master instance. Since only a part of web services may
be overloaded and few will be serious at a time, spare
instances for different service can be allocated on a
shared node for making better use of system resource.
The shared node on which spare instances host is
called spare node.

As afore-mentioned, our aim is to provide addition
resources for the lightly overloaded services and offer
temporary resources for the service that is being short-

term severe overload or instance failure, in the term of
supplying few shared resources (spare nodes). We
should guarantee the fairness and resource availability
in the spare node, thus none of the spare instance is
allowed to occupy excessive resource for long term.
IAMS defines a quota limit for every spare instance.
The quota is set evenly or according to their weights.

Three spare instance states are defined according to
the resource utilization during the run time:

SPARE: the basic state of the spare instance, in
which no requests are redirected to the instance and the
instance consumes little resource.

NORMAL: The instance is marked as NORMAL
when its resource consumption is below the quota
limits.

EMERGENT: The instance is placed into
EMERGENT when the resource consumption exceeds
the quota limit. It is a temporary state.

Both of the EMERGENT and NORMAL state are
working state.

4.2. Spare node manager

The structure of spare node is similar to other node,
but a resource utility based controller must be
embedded in every spare instance to ensure
performance isolation. Spare node manager is a special
local manager. The additional responsibilities are:

Dynamically allocate and set the reference
(resource utility) for spare instance controllers
according to the number of working instances and their
workloads in the spare node, so as to afford higher
resource utilization and performance isolation. The
reference value could be larger than its quota. A single
spare instance can even occupy almost whole node
resources temporarily, if no other instance is working.

Spare instance is allowed to occupy the excessive
resource in a short time because of severe overload.
But if the time is out, the local manager will set the
controller reference to its quota, imposing the resource
utility reduced to its quota. Meanwhile, the local
manager will send an event to the global manager
asking more resources for the corresponding service.

4.3. Spare instance state transition

Originally the spare instance is in SPARE state.
When the master instance fails or server overload
occurs, some requests are redirected to the spare one,
which leads to the state transition. And whether the
state changes to NORMAL or EMERGENT depends
on the resource occupied. Further, the instance in
NORMAL state may transfer to EMERGENT if the
situation is even worse. Similarly, the instance may

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

transfer from EMERGENT state to NORMAL or
SPARE if the fault recovers or the overload disappears.
All the resource is freed when the state finally returns
to SPARE. Sometimes the situation may not turn better
for a long time and excessive resources keep occupied.
To assure the availability of the spare resources, we
limit the interval that the instance can be in
EMERGENT state. In breach of the time limit, it will
be imposed to NORMAL by the local manager. Fig. 3
gives state transition diagram.

Fig. 3. State transition diagram of spare instance
We have made a simple comparison. In our system

the elapsed time of putting the spare instance into use
is about 0.12 sec, while the time taken for the
traditional policy is 1.05 sec for the Apache service
and for Oracle 10g it is 7.69 sec.

In summary, the spare node(s) contributes to a spare
resource pool. In the case of the master instance’s
failure, the spare instance avoids service breakdown
and the decline in SLA, it improves the fault tolerance
and contributes to provide non-stop service. For short
term severe overload, the available resource could be
enlarged instantaneously, much quickly without
launching a new instance temporarily. And it can
supply additional resource when slightly overloaded
for a long time. By introducing the spare instance, the
adaptive capacity of the application would be greatly
improved in the case of overload and the workload
surge.

5. The basic adaptation element ——
multi-purpose control scheme

In this section we discuss the design and
implementation of the multi-purpose feedback control
scheme. In the end of this section, we extend it to
implement QoS differential service.
 The multi-purpose control scheme using reject-time-
ratio (RTR) as control input is shown in Fig. 4. In this
figure, the output is performance metric measured
periodically by the detector and reference is the desired
value of output. The scheme consists of LQR, AC
actuator and the web service itself. The actuator is
responsible for rejecting or redirecting incoming
requests in rejection time interval according to the RTR
given by the LQR. The LQR produces optimal control
signal RTR, so as to ensure the output meet the desired

value and make suitable trade-off between
performance error and the throughput.

Fig. 4. Block diagram of control scheme

As RTR can affect a variety of performance metrics
in a meaningful way, this scheme can be used as multi-
purpose controller. When regarding resource utility as
the output, it would be a resource utility based
controller which can be used to prevent overload or
performance isolation. In other case, when stressing on
a specified performance metric or lacking of the
knowledge of the bottleneck of resources, the
performance metric, such as throughput, response time
should be used as output and then it could be a QoS
metric based controller aiming to control QoS metric.

5.1. Admission control using reject time ratio

Admission control is an effective technique to afford
QoS support under overload condition. The idea is
reducing the amount of work required when faced with
overload by dropping a portion of the requests. By this
way, the server can service the accepted requests faster
and meet the QoS performance. However, dropping too
many requests would cause revenue loss. An online
feedback based admission control scheme is illustrated
in Fig. 4. A controller periodically takes resource
utility of the node (bottleneck for service) or
performance measurements of the Web service from a
detect agent, compares it with the reference (desired
value), and adjusts the admitting probability (P) to
meet the control goal. The changes to the admitting
probability can be actuated through an admission
control (AC) module. Through the AC module, a
request is being accepted with probability Pa, and
being dropped with probability Pd = 1-Pa [12]. Based
on the fact of the ratio of the time for rejecting requests
to the control period (Reject Time Ratio) is
proportional to drop probability Pd, it is used as an
input for admission control in our system.

We define reject time ratio as follows
RTR = rjtt / ctrlT (1)

where Tctrl is the control period. trjt is the time interval
in which all requests are rejected, and in the left time,
requests are admitted.

If in rejection time interval, only the requests of new
sessions are rejected or redirected to keep the session
integrity, it would be a session based admission control

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

applied for the session based applications such as
commercial services.

5.2. Modeling

The dynamic model, that describes the mathematical
relationship between input(s) and output(s), is the basis
for controller design. For lack of detailed knowledge
about the inner workings of the web service, we adopt
system identification approach to establish the models.
The open-loop service is modeled as a difference
equation with unknown parameters. Then we stimulate
the web service with pseudo-random signal as inputs
and sample output data. After collecting the data, the
least square estimation of model parameters can be
solved via MATLAB.

5.2.1. Model structure. Difference equation with
unknown parameters is a common used dynamic
model. In most cases the first order or second order
Difference model is exact sufficiently. We adopt first
order difference equation

)1k(bu)1k(ay)k(y −=−+ (2)
to describe the web service.

5.2.2. Input signal. The input signal should be
persistently exciting to satisfy the identifiable
condition. Pseudo-random digital white noise and
pseudo-random binary sequence (M-sequence) have
been widely used for system identification. In our
experiments, M-sequence is used as input signal to
randomly switch RTR .

5.3. Linear quadratic optimal design

To design linear quadratic optimal controller, state
equations are required to describe the control system.
A state representation and state feedback equation are
shown as (3) and (4) respectively.

)1k(Bu)1k(Ax)k(x −+−= (3)
)k(Kx)k(u = (4)

Here, x(k), u(k) is state vector and control vector at
instant k correspondingly, K is control gain matrix. The
aim of controller design is to find the proper gain
matrix K to minimize the cost function (5)

[]∑
∞

=

+=
0k

TT)k(Ru)k(u)k(Qx)k(xJ (5)

Q is a positive semi-definite state weight matrix, and R
is the control weight matrix which is positive definite.
Q and R are usually diagonal matrices. This approach
involves following main steps.

(1) Select state variables and obtain state equations
for the system. The state variable should be relative to
performance metric.

(2) Determine weight matrices Q and R to get
satisfied trade-offs among different states (performance
metrics) and the magnitude of inputs. A basic principle
for selecting weight matrix is: the more important the
state, the larger the weight.

(3) Solve the Riccati equation to determine the
optimal control gain matrix.
 (4) Check whether the stability and dynamic
character of the close loop system are satisfied. If not,
repeat step (2).

The main problem for LQR design is to select state
variables and weight matrices carefully.

5.4. Implementation of the controller

5.4.1. Selection for state variables. Assume that the
open loop model has already been obtained and shown
as (2). Since the close loop system works as Fig. 4, we
select the states as

[]T21)k(x),k(x)k(x =

)k(e)k(x1 = , ∑
=

=
k

1j
2)j(e)k(x (6)

Thus, the control input rtr (reject time ratio) would be
)1k(xk)1k(xk)k(rtr 2211 −+−= (7)

The corresponding cost function is

[]∑
∞

=
+=

0k

TT)k(rtr)k(rtr)k(x)k(xJ QR (8)

The state equation translated from difference equation
(2) is shown as (9).

)k(rtr
b

b
)k(x
)k(x

1a
0a

)1k(x
)1k(x

2

1

2

1

−

+

−
=

+
+

 (9)

5.4.2. Selection for weight matrices. As the transient
error is more important than accumulate error, and the
input rtr is direct proportion to the rejected requests,
too smaller weight for it would result in excessive
reduction of throughput which is an important
performance metric. We select a larger weight for state
x1 (transient error), and same weight for x2 and rtr, then
we find the optimal control gain using MATLAB. If
the stable and dynamic indexes are satisfied, the
controller has been designed successfully.

5.5. Extending the controller to differentiated
service

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

In this paragraph we discuss how to extend our
controller designed by LQ optimal approach to support
service differentiation. We consider three classes of
quality of services. All clients are classified into VIP,
premium and basic classes. The requests from VIP
(few clients with the highest priority) will never be
rejected, i.e. the RTR for VIP is zero for ever. The
premium client who has the middle priority gets better
quality of services than the basic one. The percentage
of premium requests or sessions that completed
successfully should be far more than that of basic
during overload. That means the RTR of basic should
be (much) larger than that of premium. The
differentiated service can be implemented by
differentiated control. As we know, in the LQR design
the trade-off between different inputs can be achieved
by adjusting the weight matrix of inputs and in cost
function (5), an input with a heavier weight would has
a smaller control gain. Therefore we select a larger
weight for the input of premium, then the control value
for the premium is sure to be (far) less than that of the
basic, and the throughput of premium would outweigh
that of basic. A differentiated service control scheme
based on above idea is shown in Fig. 5.

Fig.5. Differentiated services control

In this scheme, two LQ regulators are employed for
controlling the premium and the basic requests
respectively. The web service with two inputs and
single output can be described with a MISO difference
equation, which is expressed as

)1k(ub)1k(ub)1k(ay)k(y 2211 −+−=−+ (10)
The unknown parameter in (10) can be achieved by
system identification and the state representation can
be translated from (10). Selecting appropriate weight
for Q and R in cost function (5), satisfied QoS
differentiated services can be obtained. By changing
the weights in R, the completed percentage ratio of the
two classes is tunable. An experiment of differential
QoS service is presented in next section.

6. Experimental results on Tomcat

In this section, we provide some experiments
including overload protection, resource utility and QoS
performance control on Tomcat. Since most

commercial web services are session based, all
experiments are the session-based.

6.1. Testbed

The testbed consists of three Pentium IV computers
as client running the workload generator. Tomcat 5.5
runs on a Pentium III 500MHz, with 512MB RAM as
server machine. All the machines run Linux Kernel
2.4.21 and are connected through a LAN of 100Mb/s.
In such circumstance, the capacity of Tomcat is less
than 20sess/sec, for in that time the CPU utility is
larger than 0.95.

6.2. Workload

The workload was generated by Httperf[13], a
workload generator and performance measurement
tool, which support to generate HTTP/1.1 requests and
manage user sessions. We use a simulation model with
following parameter:

 The session length is exponentially distributed
with a mean of 15,

 A timeout — the time client waits for a reply
before resending the request — is set to 10
seconds,

 Think time between the requests of the same
session is exponentially distributed with a
mean of 5 seconds,

 The number of retries to resend the request
after timeout is 1.

Throughout this section, we consider a file mix as
defined by SpecWeb99[14]. Since the web pages are
all static page, a series of experiments in the workload
can prove the adaptive effect for static website.

6.3. Experiments for CPU utility based
controller

6.3.1. Overload Control. The CPU utility based
controller is used in the experiment because CPU is the
bottleneck of resources in our experiment environment.
CPU utility is regarded as output and reference is set to
0.9. The load-performance comparison given in Fig. 6
indicates the throughput in completed session of
augmented Tomcat keep in a higher level and the
average response time maintains within an acceptable
extent (82~133ms), when workload changes greatly. If
the request is rejected, we send back a clear message of
rejection to prevent clients from unnecessary retries.
Since issuing an explicit rejection message incurs an
additional load on web server, the throughput of
augmented Tomcat is a little less than the max
throughput of the original one.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

Fig. 6(a). Comparison of throughput in completed sessions

Fig. 6(b). Comparison of response time

6.3.2. CPU utility control. In the experiments
below, Tomcat and other applications run on the same
server. The desired CPU utility of Tomcat is 50%

Under a varying workload shown in Fig. 7(a), the
result shown in Fig. 7(b) illustrates the CPU utility of
the original Tomcat fluctuates with the load in a large
scale, and that of the augmented Tomcat fluctuates
around 0.5 with a mean of 0.49 and a mean square
variance of 0.004.

Fig. 7(a). Workload pattern

Fig. 7(b). Comparison of CPU utilization

6.4. Experiment for response time based
controller

In the experiment we set reference value 100ms. Fig.
8 illustrates the average response time of augmented
Tomcat bound at about 100ms. Even if the workload is
high up to 40sess/s (about twice the capacity), the
response time being 105ms is a little more than the
desired value.

Fig. 9(b) shows the response time of augmented
Tomcat fluctuates near the 100ms under varying work-
load shown in Fig. 9(a), while that of original Tomcat
changes with workload and is extremely greater.

Fig. 8. Average response time comparison

Fig. 9(a). Workload pattern

Fig. 9(b). Response time control in fluctuating workload

6.5. QoS differential service

In this paragraph, we provide the result of QoS
differential service experiment, applying control
scheme shown in Fig. 4. For simplicity, only two
classes (premium and basic) are considered. In this
experiment, CPU utility based control is used and its
reference is set to 0.9. The weight matrices are selected
as Q=diag([1,0.1]),R=diag([0.1,0.001]), the weight of
premium is 100 times of that of basic. The premium
client sends the requests at the same session rate as that
of the basic client. Fig. 10 demonstrates the
comparison of percentage of completed session. When
in the normal load, the completed percentage are both
close to 100%. As the load rises up, the percentage of

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

the premium descends slightly, but that of basic drops
drastically. When the load reaches 40sess/s, the
percentage of the premium is about 75% which is four
times of that of the basic. The result indicates the
control scheme can provide differentiated service
effectively. By changing the weights of elements in R,
the percentage ratio of the two classes is tunable.

Fig. 10. Percentage of completed session

7. Experimental results in 3-tiered web site

To provide a full-scale evaluation of our multi-
purpose control scheme, this section will show some
experiment results in a 3-tiered web site. The experi-
ments prove the control effect for dynamic website.

7.1. Testbed

The structure of our testbed is shown in Fig. 11. It
consists of a client node and two server nodes. Each
node is dual Opteron processor 1.5 GHZ, 2G RAM
with Gigabit Ethernet connected point-to-point full
duplex with the switch. One server node runs the Web
server and application server software, while the other
contains the database. The client node drives the
system with the standard workload generator TPCW.
All nodes run Red Hat Linux with the Linux kernel
2.4.21. We use Apache v2.0 for the front-end Web
server, Jakarta Tomcat v5.5.12 as the application
server and MySQL v5.0.18 for the database server. The
controller is place in the proxy.

Fig. 11. Structure of 3-tiere web site

7.2. Workload Generator

We use TPC-W[15] for our e-commerce Web site
testbed. It implements all functionalities that typical e-
commerce Web sites provide. A Java implementation
of TPC-W from the PHARM group at the University
of Wisconsin [16] is modified to make it compatible

with the newest version of Tomcat and MySQL
installed in our testbed. It implements all
functionalities in TPC-W specification. The database is
configured to contain 10,000 items and 288,000
customers. Think time is exponentially distributed with
a mean of 0.7 seconds and bounded at a maximum of 7
seconds.

7.3. Experimental result

We present the results both of the CPU utility based
overload control and the response time based control
experiments on 3-tiered website. For the limitation of
space we will not give detail description for them. The
advantage and efficiency of the multi-purpose control
scheme is obviously.

7.3.1. CPU utility based overload control. In our
experiment, the bottleneck of resources is the CPU
utility of the database MYSQL. We use it as output
and set the reference to 0.85. Fig. 12(a) and 12(b) is the
throughput and response time comparison for the
controlled and un-controlled 3-tiered web site.

Fig. 12(a). Throughput comparison

Fig. 12(b). Comparison for response time

7.3.2. Response time based control. Here we present
the results of two response time control experiments.
Fig. 13 is for average response time control, and Fig.
14 is for transient response time control under a
varying workload. The setting value is 600ms. The
results show the response time of controlled web site
can track the setting value well.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

Fig. 13. Comparison for average response control

Fig. 14(a). Workload pattern

Fig. 14(b). Controlled 3-tiered web site

Fig. 14(c). Response time of un-controlled 3-tiered web site

As shown, the control scheme can be flexibly
configured to the dynamic website and achieve
satisfied result.

8. Conclusion and future work

In this paper we present a SLA event-driven based
integrated adaptive management system (IAMS) for
cluster-based web services. The system introduces
spare instances as a supplemental adaptive mechanism
and a multi-purpose feedback control scheme as the
basic element to enforce the policies for interrelated
metrics. The controller provides flexible adaptation
and can be extended to support QoS differentiated
service. In addition it can be easily configured for
various applications, without changing the source code.

We have presented rich experiments including
overload protection, resource utility and QoS
performance control both on static and dynamic

website. The results illustrate our multi-purpose
control scheme can offer effective QoS differential
service and satisfied performance. Now the controller
as the adaptive element only provides throughput
different-tiation. In the future, we will make attempts
to improve the differential service, such as providing
response time differentiation in more complicated
environment.

9. References

[1] K. Shen, H. Tang, T. Yang, and L. Chu, “Integrated
Resource Management for Cluster-based Internet Services”,
In OSDI 2002.
[2] Sara E. Sprenkle, “Exploring Availability and Usage
Guarantees in Resource Allocation Through Leases”, Duke
University Computer Science, 2004.
[3] K. Applby, S. Fakhouri, L. Fong, et al., “Oceano -- SLA
Based Management of a Computing Utility”, the IFIP/IEEE
Symposium on Integrated Network Management, 2001.
[4] K. Hartig, D. Reedy, “Associating Service Level
Agreements to Applications in a Dynamic Environment”,
http://rio.jini.org/.
[5] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra, “Kernel
Mechanisms for Service Differentiation in Overloaded Web
Servers”, the USENIX Annual Technical Conference, 2001.
[6] N. Bhatti, R. Friedrich, “Web Server Support for Tiered
Services”, IEEE Network, vol. 13, no. 5, pp. 64–71,1999
[7] S. Elnikety, E. Nahum, J. Tracey, W. Zwaenepoel, “A
Method for Transparent Admission Control and Request
Scheduling in E-Commerce Web Sites”, In Proc. of the Int'l
WWW Conf, 2004
[8] L. Cherkasova, P. Phaal, “Session-Based Admission
Control: A Mechanism for Peak Load Management of
Commercial Web Sites”, IEEE TRANS. COMPUTERS, vol.
51, no. 6, 2002
[9] Y. Diao, N. Gandhi, J.L. Hellerstein, et al., “Using
MIMO Feedback Control to Enforce Policies for Interrelated
Metrics with Application to the Apache Web”, NOMS 2002.
[10] C. Lu, T.F. Abdelzaher, J.A. Stankovic, and S.H. Son,
“A Feedback Control Approach for Guaranteeing Relative
Delays in Web Servers”, RTAS, 2001
[11]A. Kamra, V. Misra, E. Nahum, “Yaksha: A Self-tuning
Controller for Managing the Performance of 3-Tiered
Websites”. IWQoS 2004
[12] Xue Liu, Jin Heo, Lui Sha,Xiaoyun Zhu, “Adaptive
Control of Multi-Tiered Web Application Using Queueing
Predictor”, NOMS 2006
[13] D. Mosberger, T. Jin, “httperf: A Tool for Measuring
Web Server Performance”, in First Workshop on Internet
Server Performance, 1998
[14] “The Workload for the SPECweb99 Benchmark”,
http://www.spec.org/web99/, 2002.
[15] D.A. Menasce, “TPC-W: A Benchmark for E-
commerce”, IEEE Internet Computing, 2002
[16] T. Bezenek, H. Cain, R. Dickson, et al., “Characterizing
a Java implementation of TPC-W”, 3rd Workshop On
Computer Architecture Evaluation Using Commercial
Workloads, 2000

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 6, 2009 at 05:17 from IEEE Xplore. Restrictions apply.

