

Performance Evaluation of R with Intel Xeon Phi Coprocessor

1*
Yaakoub El-Khamra,

2*
Niall Gaffney,

 3*
David Walling,

4+
Eric Wernert,

5*Weijia Xu,
6+

Hui Zhang

*
Texas Advanced Computing Center,

University of Texas at Austin

Austin, Texas USA
1
yye00@tacc.utexas.edu,

2
ngaffney@tacc.utexas.edu,

3
walling@tacc.utexas.edu,

5
xwj@tacc.utexas.edu,

+ Pervasive Technology Institute,

Indiana University

Bloomington, Indiana USA
4
ewernert@iu.edu,

 6
huizhang@iu.edu

Abstract-- Over the years, R has been adopted as a major data

analysis and mining tool in many domain fields. As Big Data

overwhelms those fields, the computational needs and

workload of existing R solutions increases significantly. With

recent hardware and software developments, it is possible to

enable massive parallelism with existing R solutions with little

to no modification. In this paper, we evaluated approaches to

speed up R computations with the utilization of the Intel Math

Kernel Library and automatic offloading to Intel Xeon Phi

SE10P Co-processor. The testing workload includes a popular

R benchmark and a practical application in health

informatics. There are up to five times speedup gains from

using MKL with a 16 cores without modification to the

existing code for certain computing tasks. Offloading to Phi

co-processor further improves the performance. The

performance gains through parallelization increases as the

data size increases, a promising result for adopting R for big

data problem in the future.

Keywords: Performance Evaluation; Statistic software;

Parallel Computing; Intel Xeon Phi

I. INTRODUCTION

In many academic domains, the increasing sheer

volume of the data availability presents exciting

opportunities of new discoveries as well as significant

challenge in analytic needs. The problem is often not

characterized by the absolute number of bits of data, but the

mismatch between the availability of the data and the

existing analytic methods. On one hand, the Big Data

problem will eventually bring a fundamental shift in

computing needs for scientific data analysis and require

new data computing models. On the other hand, advances

in hardware and software tool development together could

meet immediate needs in scaling up computation using

existing solutions without costly efforts in developing new

software tools. In this paper, we focus on how new

hardware capable of providing massive parallelism can be

 Authors are listed in alphabetical order.
 Author of correspondence.

utilized with a popular data analysis tool R and provide a

performance comparison.

Due to its high extensibility and open source

development, R has become a popular software tool and has

been adapted to many scientific fields by researchers over

the years. First created as an open source statistical

computing language in 1993, the R ecosystem has evolved

with features for statistical analysis, data mining and

visualizations [1]. Furthermore, R enables users to develop

domain focused libraries as packages which can be easily

distributed and shared by the user community. There are

4,744+ packages available through the Comprehensive R

Archive Network (CRAN). Those packages are developed

to address problems from various research domains, such as

social science[2], bioinformatics [3, 4], geosciences [5],

business analysis[6] and in clinical science[7], to just list a

few. Developed packages often utilize existing features

implemented in the R core packages. Therefore,

improvement and optimization made with basic computing

tasks, such as matrix manipulations and linear algebra

computations can benefit a large number of packages built

upon them.

Although R is clearly a “high productivity” language,

high performance has not been a development goal of R.

Designed as a computing language with high level

expressiveness, R lacks much of the fine grained control

and basic constructs to support highly efficient code

development. One approach to improve performance of R

has been using dynamic libraries written in other

programming language for expensive computations. While

most features in R are implemented as single thread

processes, efforts have been made in enabling parallelism

with R over the past decade. Parallel package development

coincides with the technology advances in parallel system

development. For computing clusters, Li and Rossini first

introduced a package, rpvm, based on Private Virtual

Machine (PVM) [8]. Yu et al created a package Rmpi as an

interface between R and Message Passing Interface in 2002

[9]. A popular parallel package, Snow, can utilize several

low level communication protocols including MPI, PVM

and socket connection [10]. There are also a number of

2013 IEEE International Conference on Big Data

23978-1-4799-1293-3/13/$31.00 ©2013 IEEE

packages developed to utilize a multicore system including

fork, rparallel and multicore [11, 12].

The parallel package development is initially fueled by

the increasing computational complexity of the required

methodologies. Common examples include matrices

decomposition, linear system solver, Markov chain Monte

Carlo simulation and bootstrapping. Since the complexity

of those solutions typically ranges from linear to

polynomial time to the input data, the increasing volume of

big data present can increase the computational requirement

dramatically. Recent effort has been made specifically for

Big data including R-pbd package [13], and Rhadoop

project [14]. A common approach in using R for big data is

to break large data sets into chunks and runs each chuck in

parallel sessions. Therefore, more parallel processes can

improve the throughput of processing big data problems

with R.

A common usage model is to rewrite some basic

functions or processing flow with the corresponding

parallel version provided by the parallel packages.

Developing these packages often requires the user to have

extensive knowledge in both existing R code as well as the

parallel mechanism supported by the additional packages.

 R enables linking to other shared mathematics libraries

to speed up many basic computation tasks. One option for

linear algebra computation is to use Intel® Math Kernel

Library (MKL)[15]. MKL includes a wealth of routines to

accelerate application performance and reduce development

time such as highly vectorized and threaded linear algebra,

fast Fourier transforms (FFT), vector math and statistics

functions. Furthermore, the MKL has been optimized to

utilize multiple processing cores, wider vector units and

more varied architectures available in a high end system.

Different from using parallel packages, MKL can provide

parallelism transparently and speed up programs with

supported math routines without changing code. It has been

reported that the compiling R with MKL can provide three

times improvements out of box [16].

Significant efforts have been made in developing

accelerator cards that can easily increase the parallel

processing potential in recent years. A general purpose

graphic processing unit (GPGPU) extends parallel functions

and technologies traditionally embedded in graphic

processing units to handle more generic computations.

Computational solutions can utilize the parallel features

provided by GPU through programing interface such as

OPENCL and CUDA. Most recently, the Intel Xeon Phi

SE10P Co-processor (Xeon Phi) integrate 60 processing

cores and 8GB memory in a single card. A critical

advantage of the Xeon Phi co-processor is that, unlike

GPU-based co-processors, the processing cores run the Intel

x86 instruction set (with 64-bit extensions), allowing the

use of familiar programming models, software, and tools. In

addition to allowing the host system to offload computing

workload partially to the Xeon Phi, it also can run a

compatible program independently.

In this paper, we focus on how Xeon Phi could benefit

the popular R packages in parallel processing. We

evaluated two models of utilizing Xeon Phi: a) as a co-

processor to offloading workload from host and b)

offloading in combination with existing parallel packages

available in R. We used the popular R-25 benchmark for

performance evaluation while varying several factors

including number of parallel processes and input data sizes.

To study the potential benefit to the big data problem, we

conducted preliminary runs with two practical problems.

II. BACKGROUND AND RELATED WORK

A. Background on Intel Xeon Phi SE10P Co-processor

The basis of the Xeon Phi is a light-weight x86 core

with in-order instruction processing, coupled with heavy-

weight 512bit SIMD registers and instructions. With these

two features the Xeon Phi die can support 60+ cores, and

can execute 8 double precision (DP) vector instructions.

The core count and vector lengths are basic extensions of an

x86 processor, and allow the same programming paradigms

(serial, threaded and vector) used on other Xeon (E5)

processors. Unlike the GPGPU accelerator model, the same

program code can be used efficiently on the host and the

coprocessor. The same Intel compilers, tools, libraries, etc.

used on Intel and AMD systems are also available for the

Xeon Phi.

The Xeon Phi runs a lightweight BusyBox Operating

System (OS), thereby making the Xeon Phi function as a

separate Symmetric Multiprocessor (SMP). So, while the

Xeon Phi can be used as a work offload engine by the host

processors, it is also capable working as another

independent (SMP) processor. In the latter mode MPI

processes can be launched on the Xeon Phi and/or the E5

processors. In this "symmetric" mode the Xeon Phi appears

as an extra node for launching MPI tasks.

These co-processors contain a large number of

(relatively) simple cores running at lower frequency to

deliver much higher peak performance per chip than is

available using more traditional multi-core approaches. In

the case of the Intel Xeon Phi SE10P Co-processor used in

this paper, each coprocessor chip has a peak performance of

roughly 1070 GFLOPS, approximately six times the peak

performance of a single Xeon E5 processor, or three times

the aggregate peak performance of the two Xeon E5

processors in each Stampede compute node. Each

coprocessor is equipped with 8GB of GDDR5 DRAM with

a peak bandwidth of 352GB/s, also significantly higher than

the 51.2GB/s peak bandwidth available to each host

processor chip.

24

B. Related work in Enabling Parallelism with R

There are nearly 30 packages that are related in enabling

parallelism listed in CRAN task view for high performance

computing. Among them, some are designed to provide

explicit parallelism where users control the parallelization

(such as Rmpi and snow); some are specially designed to

provide implicit parallelism so that the system can abstract

parallelization away (such as multicore); others are high

level wrapper for other packages and intended to ease the

use of parallelism, such as snowfall and foreach. Here we

only reviewed some of the major packages that are directly

related to our investigation. Rmpi is one of the earliest

parallel package developed for R and is still used today and

is built upon by other packages[9]. Rmpi provides an

interface between R and Message Passing Interface and can

link to an existing MPI implementation. The users need to

link the R package with a MPI library installed separately,

then the package enables users to use mpi-like code in R

scripts. The package also includes parallel implementations

of apply-like functions. The snow package utilizes Rmpi

and several other existing parallel packages to expand the

parallel support through a simple interface[10]. There are

also several packages for exploiting parallelism within a

single compute node. Fork is based on the system

processing management interface to generate additional

threads for computations[9]. Pnmath uses the OPENMP to

implement many common mathematic functions to run in

parallel. R/parallel provides support for running loops in

parallel using a master-slave model[8]. Multicore package

has been developed for utilize multiple cores available on

the system. In addition, there are projects related with big

data but not directly compared here, e.g. pbdR, Rhadoop

etc. For a more comprehensive reviews of the parallel

packages, interested reader can refer [17, 18].

III. EXPERIMENTAL DESIGN AND EVALUATION

A. Objectives of the Experiment

The primary objective for this investigation is to

investigate the benefit of using Xeon Phi with R. We tested

two usage models and compare to a baseline model of

running R serially. The first model is to utilize the MKL on

the host CPU only. We then experiment using the Xeon Phi

processor to co-process with the host process. In the latter

model, some of the computation can be passed to the Xeon

Phi co-processor, also known as workload offloading.

Theoretically, with an appropriate library, any

computational workload could be offloaded to Xeon Phi for

co-processing. Through the usage of MKL, we can run an

R script in several different models without changing the

script. Specifically, our tests include the following different

models of computation.

 M1) Plain R without any parallelism. In this model, R
was compiled and built with MKL, but with available
threads set to 1. Therefore, all computations are run in
single thread. This serves as a baseline for comparison.

 M2) R with MKL utilizing host CPU only. In this
model, R was compiled and built with MKL as the
library for the linear algebra computation. MKL can
automatically utilize the available cores in the host
system for parallel processing. In our test, the host
computing node has 16 cores.

 M3) R with MKL utilizes both host CPU and Xeon Phi
co-processor. In this model, R was compiled and built
with MKL as well. However, the offloading to Xeon
Phi is enabled. A configurable portion of the workload
can be specified to use Xeon Phi, ranging from 0
percent to 100 percent.

For each of the above tests, we tested the factors
affecting the performance including, functions affected by
MKL, number of threads used, and size of input data.
Furthermore we always used a “scatter” thread distribution
on the Xeon Phi, as that always gave the best performance.

To evaluate how the automatic parallel offloading

comparing to explicitly parallelism with other packages,

batch runs of benchmarks are also conducted. When using

with the MKL/Phi, the batch runs are initiated sequentially.

While with other parallel packages, the batch runs are

distributed out for explicitly parallel processing. Lastly,

preliminary tests were also conducted with domain

application to further evaluate potential benefit in practice.

B. Testing Workloads:

We first tested using the R-25 benchmark script

available at http://r.research.att.com/benchmarks/. The

testing script includes fifteen common computational tasks

grouped into three categories: Matrix Calculation, Matrix

function and “Programmation” (R scripting). The fifteen

tasks are listed in Table-1. The choice of using the R-25

benchmark is mostly based on the fact that it appears to be

the most popular, widely acknowledged benchmark. We are

reaching out to R users on Stampede to improve their code

performance with the Xeon Phi’s and actively modifying

code inside R modules to make use of the Xeon Phi. Early

results of these efforts (including extensive scalability

results) are promising and will appear in subsequent

publications. The R-benchmark might not be the absolute

best representative benchmark of Big-Data applications, it

is however representative of typical R usage and does

contain elements of Big-Data applications on Stampede.

In addition to testing the base R-25 benchmark script

across the different usage models, we also explore the speed

up gained when varying the size of the matrices and number

of elements used in the benchmark to compare the results

between host only MKL vs. Xeon Phi offloading.

25

We next turn R-benchmark into a wrapper function, and

examine how to execute parallel calculations via the high-

level interfaces provided by multicore and snowfall

packages for more compute-intensive tasks (e.g., when

“nruns -> 100” or more in R-25 benchmark script).

We then investigate how parameters controlling

offloading computations to Xeon Phi effect speed up of

computation heavy matrix based computations. This

investigation includes timing DGEMM based calculations

while varying work offloading parameters to achieve

maximum speed up for these operations.

TABLE I. TRANSLATION OF BENCHMARK NUMBER TO R-25

BENCHMARK DESCRIPTION FOR ALL R-25 PLOTS.

Task

Number
R25 Benchmark Description

1 Creation, transp., deformation of a 2500x2500 matrix (sec)

2 2400x2400 normal distributed random matrix

3 Sorting of 7,000,000 random values

4 2800x2800 cross-product matrix

5 Linear regression. over a 3000x3000 matrix

6 FFT over 2,400,000 random values

7 Eigenvalues of a 640x640 random matrix

8 Determinant of a 2500x2500 random matrix

9 Cholesky decomposition of a 3000x3000 matrix

10 Inverse of a 1600x1600 random matrix

11 3,500,000 Fibonacci numbers calculation (vector

calculation)

12 Creation of a 3000x3000 Hilbert matrix (matrix calculation)

13 Grand common divisors of 400,000 pairs (recursion)

14 Creation of a 500x500 Toeplitz matrix (loops)

15 Escoufier's method on a 45x45 matrix (mixed)

16 Total time for all 15 tests (not averaged)

17 Overall mean (sum of means of all tests)

Finally, we tested the benefit with offloading to Xeon

Phi with one practical application in large-scale Bayesian

multiple testing for time-series data. The project concerns

nonparametric statistical methods and regularization

techniques in high dimensional volatility matrix estimation.

The computations are implemented in R, with each of 5

runs taking more than 5 hours to iterate through 5000

combinations of input parameters, and the whole batch

processing originally taking more than 24 hours without

exploiting parallelism of any kind.

C. System Specification

To evaluate the applicability of different methods for

improving R performance in a high performance compute

environment, we used the Texas Advanced Computing

Center Stampede cluster. Stampede provides several

different techniques for achieving higher performance

computations which include using its Xeon Phi accelerators

and/or NVIDIA Kepler 20 GPUs for large matrix

calculations. In this test, each compute node has two Intel

Xeon E5-2680 processors each of which has eight

computing cores running @2.7GHz. There is 32GB DDR3

memory in each node for the host CPUs. The Xeon Phi

SE10P Coprocessor installed on each compute node has 61

cores with 8GB GDDR5 dedicated memory connected by

an x16 PCIe bus. The NVIDIA K20 GPUs on each node

have 5GB of on-board GDDR5. All compute nodes are

running CentOS 6.3. For this study we used the stock R

3.01 package compiled with the Intel compilers (v.13) and

built with Math Kernel Library (MKL v.11). In addition to

this version of R, a second version was compiled to run

natively on the Xeon Phi coprocessors. The gputools

package (version 0.28), which supplies the ability to offload

linear algebra calculations to the NVIDIA Kepler GPUs,

was linked with the CULA dense library free version R17

which in turn was linked to CUDA 5.0 toolkit.

IV. RESULTS AND DISCUSSION

A. Summary of Different Methods Comparison

Figure 1 shows the speed up of three different methods

over the single thread execution for tasks listed in Table-1.

The default R running with single thread is shown in blue

as our base line for comparison with a speed up equal to

one. We also exploited parallelism with GPU with the

gputools module. However, the result (purple column)

showed little benefit and even worse performance for some

computing tasks. Despite our best efforts to improve the

performance of the CUDA code in the gputools module, we

ran into issues that required contacting the module

developers. We chose to temporarily halt evaluating the

gputools while we work with the module authors on

improving performance. Since this is an early evaluation,

this seemed appropriate: R users who get on the system

today will see some transparent, immediate benefit from

using the Xeon Phi cards for some codes, but will need to

work on getting good performance from the gputools

(beyond changing function calls). This transparent,

immediate performance improvement is the focus of this

evaluation.

26

Figure 1. Plotted are the relative acceleration of the different threading

and offloading techniques relative to results for the single threaded MLK

benchmark results on the host.

The results of using MKL for automatic parallel

execution with 16 threads are shown in red. There are five

subtasks showing a significant benefit from the automatic

parallelization with MKL. Those tasks include cross

product between matrices, linear regression, matrix

decomposition, computing inverse and determinant of a

matrix. Other computing tasks received very little

performance gains from parallel execution with MKL. The

green column depicts the results when 70% workload is

computed through Xeon Phi. Offloading computation to

Xeon Phi can benefit the same set of computing tasks and

has about 10% additional increase over MKL with host

CPU alone. In both cases, the maximum speed up we

observed is over five times more than single thread. While

this is provides significantly faster wall clock times for

those computing tasks, the speed up is sub-linear to the

additional number of core/processes used. We think this is

due to the extra overhead introduced with MKL library for

automatic threading.

Figure 2. Comparison of speed up for different size of matrices or number
of elements with each benchmark tasks.

Figure 2 compares the speed up gained over serial MKL

for both host only vs. Xeon Phi offloading when varying

the size for each dimension of matrices or number of

elements of the R-25 benchmark tasks from half (small),

normal and double (big). Offloading parameters were set at

30% host and 70% Xeon Phi. The results show that for

certain tasks, speed up improves as the size of the data

being processed increases.

Figure 3. Comparison of computational time over 100 runs on R-

benchmark using different parallel packages including Snowfall,

multicore, and MKL.

To compare the parallelism supported by MKL and

Intel Xeon Phi processor with other parallel packages, we

conducted batch runs with the R-25 benchmark in parallel

using Snowfall and Multicore package. The first five bars in

Figure-3 shows the total running time using Snowfall

package (sfLapply) with different number of processing

cores which scales near linearly to the number of

computing cores used. The bottom four bars compare using

Multicore package (mclapply) with the serial run (lapply)

with and without offloading to Intel Xeon Phi Processors.

The comparison indicate that the benefit of using Xeon Phi

processor diminish when used with other explicit

parallelism based packages. For batch runs, explicit

parallelism is more effective than using automatic

parallelization provided through MKL.

B. Investigation of Different Models of Xeon Phi

The percentage of workload assigned to the Xeon Phi

co-processor is an adjustable parameter. We investigated

how different sizes and different workload sharing affect

performance. Figure-4 shows the speed-up factors for

different problem sizes at different workload sharing

percentages. Note that matrices have to have a minimum

size before automatic offloading starts paying off, in this

case 8192x8192. Speedup is highest in the range of50%-

70% workload on the coprocessor. As indicated in Figure 4

and Figure 5, the benefit of using parallelism through

automatic offloading improves as the input data grows.

27

Figure 4. Speedup factor as a function of percentage of work on the

coprocessor and matrix size. Note that forced offloading of small matrix
operations reduces performance.

There are 60 physical processing cores available on

each Intel Xeon Phi. Each computing core has four

hardware threads. We can therefore run with 60 or 240

parallel threads on each Xeon Phi coprocessor.

Furthermore, we can work share across the host the Xeon

Phi, or across the host and two Xeon Phi coprocessors with

different workloads as shown in Figure 5. Figure 4 shows

the speedup factor for a basic matrix multiply in R with 1

thread on the host, 16 threads on the host, 60 threads on a

Xeon Phi, 240 threads on a Xeon Phi, work-sharing at the

30% host (16 threads) 70% coprocessor (240 threads) sweet

spot and work-sharing at the 20% host (16 threads) and

40% coprocessor (240 threads) for each of the two Xeon

Phi’s. The work-sharing sweet spots were chosen based on

the data shown in Figure 5 and its equivalent for two Xeon

Phi co-processors.

Figure 5. Speedup factors for different configurations. The highest

possible speedup is almost 60X for the largest matrix size (16384x16384)

with two Xeon Phi coprocessors (240 threads) each with 40% of the
workload. Note that at small matrix sizes, the cost of offloading to the

Xeon Phi is high enough to eliminate much of the speedup gained by using

the Xeon Phi.

C. Exemplar Application Tests

Figure 6 (Top) Parallelizing multiple testing tasks. Computations are

distributed over multiple cores (using multicore package) and multiple
nodes (using snowfall package). Enabling offloading to Xeon Phi

coprocessors gives us an extra 10% speedup when using multicore

package (from 8347.630s to 7675.636s). (Bottom) Simulations run to
compare multiple methods including BH (Benjamini and Hochberg), AP

(adaptive p-value procedure), OR (assume the true parameters are known),

LIS (Sun and Cai), FB (full Bayesian method) and NPB (nonparametric
Bayesian method). (Bottom-left: FDR (False Discovery Rate) versus µ;

Bottom-right: FNR (False Non-discovery Rate) versus µ (control steps).

Multiple testing is one of the two fundamental

statistical issues to address in the tasks of detecting and

identifying the “outbreaks” in time series data. This study

initiated by a group of researchers in IUPUI Mathematical

science department investigates statistical solutions to

examine and predict the outbreaks from data streams in

Indiana Public Health Emergency Surveillance System,

which are collected in an almost-real-time fashion and

contain daily counts of ILI, ICD9, patent chief complaints,

etc. The compute-intensive component of the project

specifically considers the problem of massive data multiple

28

testing under temporal dependence. The observed data is

assumed to be generated from an underlying two-state

hidden Markov model (HMM) - ‘aberration’ or ‘usual’.

Bayesian methods are applied to develop the independent

testing algorithm by optimizing the false negative rate while

controlling the false discovery rate. The testing procedures

use a length of 1000 as burn-in period, with 5000 MCMC

iterations. The original implementation were coded using R

in a serial fashion and a 20-run procedure roughly took

about 5 hours on desktop. The parallel solution run on

Stampede exploits parallelization with multicore package to

achieve a ~3-fold speedup, and automatic offloading to

Xeon Phi coprocessors indicates another 10% performance

improvement. While encouraging, we believe we can

increase the performance boost and will discuss our

approach and results in detail in subsequent publications.

As shown in Figure 6, computations are distributed

over multiple cores (using multicore package) and multiple

nodes (using snowfall package). Enabling offloading to Phi

coprocessors gives us an extra 10% speedup when using

multicore package (processing time was decreased from

8347.630s to 7675.636s). The study runs pairs of such

simulations to compare multiple methods including BH

(Benjamini and Hochberg), AP (adaptive p-value

procedure), OR (assume the true parameters are known),

LIS (Sun and Cai), FB (full Bayesian method) and NPB

(nonparametric Bayesian method) [19].

V. CONCLUSION

In this paper, we report our experience in using new

Xeon Phi co-processor to speed up the R computation. We

tested workload offloading potential with a popular R

benchmark and a preliminary test on a practical project. The

results indicated that the performance improvement varies

depends on the type of workloads and input data size.

As our initial investigation relied on the Intel Math

Kernel library to coordinate usage of Xeon Phi co-processor,

the types of parallel computations are limited by the

features supported by the library. Therefore, we observed

significant speed up with matrices operations, such as

transformation, inverse and cross product. For this type of

computations, the workload can be executed in parallel

automatically and transparent to end users. Therefore, there

is no need to modify the existing R script. Future

programming efforts are required to enable parallelism

manually for other types of computation.

The Xeon Phi coprocessor was designed for vector

processing, therefore it came as no surprise that those

functions can be vectorized and offloaded show promising

performance boost. A key factor to this performance

however is the size of the problem: offloading to the Xeon

Phi can be costly, and for small problem sizes, any speedup

gains can be cancelled out by offloading costs. On the other

hand, if a function does not lend itself to vectorization or

parallelism, there is nothing the Xeon Phi coprocessor can

do that will improve performance without major code

modification.

Our results showed a modest additional performance

increase when offloading to the Xeon Phi. The performance

improvement further increases as the size of the input data

increases. However, the speedup is not a linear scale up

with the number of threads used. This indicates an overhead

cost in the process of parallelization. We also found an

optimal usage is to offload about 70% workload with Xeon

Phi.

We are continuing investigation on running R packages

natively on the Xeon Phi instead of running as a co-

processor. We are also interested in comparing the

performance with other similar hardware technology such

as using GPGPU and further exploring the use of existing

parallel R packages to expand types of workloads

benefiting from Xeon Phi offloading. We are encouraged

by these initial results and feel there is great potential to

utilize hybrid parallel models, running across multiple

nodes and multiple Xeon Phi co-processors, in tackling

large scale data problems with R.

ACKNOWLEDGEMENT

This project has been funded by grants from National

Science Foundation. Experiments were conducted using

Stampede computing cluster at Texas Advanced Computing

Center.

REFERENCE

[1] R. C. Team, "R: A language and environment for statistical
computing," ed. Vienna, Austria: R Foundation for Statistical Computing,
2013.

[2] J. FoX. (Aug. 18). CRAN Task View: Statistics for the Social
Sciences. Available: http://cran.r-
project.org/web/views/SocialSciences.html

[3] C. Gondro, L. R. Porto-Neto, and S. H. Lee, "R for Genome-
Wide Association Studies," in Genome-Wide Association Studies and
Genomic Prediction, ed: Springer, 2013, pp. 1-17.

[4] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M.
Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, and J. Gentry,
"Bioconductor: open software development for computational biology and
bioinformatics," Genome biology, vol. 5, p. R80, 2004.

[5] E. Grunsky, "R: a data analysis and statistical programming
environment–an emerging tool for the geosciences," Computers &
Geosciences, vol. 28, pp. 1219-1222, 2002.

[6] A. Ohri, R for business analytics: Springer, 2013.

[7] S. Pyne, X. Hu, K. Wang, E. Rossin, T.-I. Lin, L. M. Maier, C.
Baecher-Allan, G. J. McLachlan, P. Tamayo, and D. A. Hafler,
"Automated high-dimensional flow cytometric data analysis," Proceedings
of the National Academy of Sciences, vol. 106, pp. 8519-8524, 2009.

[8] M. Li and A. J. Rossini, "{RPVM}: Cluster Statistical
Computing in {R}," R News, vol. 1, pp. 4-7, 2001.

[9] H. Yu, "Rmpi: Parallel Statistical Computing in R," R News,
vol. 2, pp. 10-14, 2002.

29

http://cran.r-project.org/web/views/SocialSciences.html
http://cran.r-project.org/web/views/SocialSciences.html

[10] A. J. Rossini, L. Tierney, and N. Li, "Simple parallel statistical
computing in R," Journal of Computational and Graphical Statistics, vol.
16, 2007.

[11] G. Vera, R. Jansen, and R. Suppi, "R/parallel - speeding up
bioinformatics analysis with R," BMC Bioinformatics, vol. 9, p. 390, 2008.

[12] G. R. Warnes. (2007). fork: R functions for handling multiple
processes. Available: http://cran.r-project.org/web/packages/fork

[13] D. Schmidt, W.-C. Chen, G. Ostrouchov, and P. Patel, "A
Quick Guide for the pbdBASE package," R Vignette, URL http://cran. r-
project.org/package=pbdBASE, 2012.

[14] J. Adler, R in a Nutshell: O'Reilly Media, 2010.

[15] Intel. Intel® Math Kernel Library 11.0. Available:
http://software.intel.com/en-us/intel-mkl

[16] A. M. Wilson. (2012). Speeding up R with Intel's Math Kernel
Library (MKL). Available: http://www.r-bloggers.com/speeding-up-r-
with-intels-math-kernel-library-mkl/

[17] M. Schmidberger, M. Morgan, D. Eddelbuettel, H. Yu, L.
Tierney, and U. Mansmann, "State-of-the-art in Parallel Computing with
R," Journal of Statistical Software, vol. 47, 2009.

[18] D. Eddelbuettel. (2013). CRAN Task View: High-Performance
and Parallel Computing with R. Available: http://cran.r-
project.org/web/views/HighPerformanceComputing.html

[19] X. Wang, A. Shojaie, and J. Zou , "Bayesian Large-Scale
Multiple Testing for Time Seires Data," Manuscript in press, 2013.

30

http://cran.r-project.org/web/packages/fork
http://cran/
http://cran/
http://software.intel.com/en-us/intel-mkl
http://www.r-bloggers.com/speeding-up-r-with-intels-math-kernel-library-mkl/
http://www.r-bloggers.com/speeding-up-r-with-intels-math-kernel-library-mkl/
http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html

