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Abstract—The era of big data has began. Although applications
based on big data bring considerable benefit to IT industries,
governments and social organizations, they bring more challenges
to the management of big data platforms which are the funda-
mental infrastructures due to the complexity, variety, velocity
and volume of big data. To offer a healthy platform for big
data applications, we propose a novel signature-based perfor-
mance diagnosis approach employing MIC invariants between
performance metrics. We formalize the performance diagnosis
as a pattern recognition problem. The normal state of a big data
application is used to train a set of MIC (Maximum Information
Criterion) invariants. One performance problem occurred in
the big data application is identified by a unique binary tuple
consisted by a set violations of MIC invariants. All the signatures
of performance problems form a diagnosis knowledge database. If
the KPI (Key Performance Indicator) of the big data application
deviates its normal region, our approach can identify the real
culprits through looking for similar signatures in the signature
database. To detect the deviation of the KPI, we propose a new
metric named unpredictability based on ARIMA model. And
considering the variety of big data applications, we build an
ensemble performance diagnosis approach which means a unique
ARIMA model and a unique set of MIC invariants are built for
a specific kind of application. Through experiment evaluation
in a controlled environment running a state of the art big data
benchmark, we find our approach can pinpoint the real culprits
of performance problems in an average 83% precision and 87%
recall which is better than a correlation based and single model
based performance diagnosis.

Keywords-Big data; Hadoop; performance diagnosis; MIC;
ARIMA

I. INTRODUCTION

As the exponential growth of data in our daily life, we have

stepped into the big data era. According to [1], 2.5 quintillion

bytes of data are created everyday and the increasing trend will

be remained in the foreseeable future. Computer scientists,

physicists, economists, mathematicians, political scientists,

bio-informaticists, sociologists, and even musicians are eager

to embrace the massive quantities of information produced by

and about people, things, and their interactions. To mine the

valuable information in the scrambled data piles, people from

academia and industry have conducted numerous work. In

the academic world, researchers have designed and developed

several big data benchmarks to understand the characteristics

of big data applications [2], [3], [4]. In the industrial world,

big data based applications such as business intelligence and

predictive analyses are implemented to analyze the customer

behaviors or predict the data trend. It’s reasonable to believe

big data becomes a new driving force to change the world.

However due to the instinct complexity and three ‘v’ (i.e.

velocity, volume and variety) properties of big data [2], [5],

several new challenges are brought to the management of big

data platforms. First, different from the transaction-based ap-

plications, the execution duration of one request issued to the

big data platform is long always ranging from several minutes

to a few hours and even longer. Therefore the QoS metrics

which are common used in transaction-based applications like

response time of a request or throughput may not work any

more. A new metric to reveal the health state of the big data ap-

plication is urgently needed. Second, the performance models

under different types of big data applications are not identical.

Hence, it’s necessary to build a unique performance model for

a unique type of workload. Considering the aforementioned

two points, we use the metric unpredictability as the health

indicator of the big data application and build an ensemble

performance diagnosis approach to adapt to the workload

changes.

The large cardinality of suspicious cause set hinders us to

uncover the actual culprits precisely and completely. There-

fore it’s impractical to propose a silver bullet to resolve

all the performance problems. In this paper we restrict our

diagnosis on a subset of performance problems in the big

data platform based on Hadoop [6]. From previous studies

[7], [8], [9], we find out performance problems are partially

caused by the runtime environment changes (e.g. resource

hogs and configuration changes). And after reviewing the bugs

of Hadoop software [10], we observe that large number of

bugs can cause performance problems. Here we only take

into account the bugs relevant to the abnormal consumption of

physical resources (e.g. CPU) or logical resources (e.g. lock).

The reasons of choosing these bugs are: these metrics can

be readily collected at runtime without instrumenting source

code; large number of these bugs exist in the software.

Numerous previous work has been done in this area, but

they mainly put their emphasis on locating anomaly coarsely

(e.g. at service level [11], [12] or VM level[8], [9]) instead

of identifying the real reasons causing performance problems.

[15] is the most close to our work, but it leverages Pearson

correlation coefficient to construct the correlation relationship

between two performance metrics which leads to some inef-

ficiency to performance diagnosis. Our aim is to identify the

real causes of performance problems at fine granularity such as

CPU hog, configuration errors or software bugs in a local host.
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To fulfill this task, we formalize the performance diagnosis as

a pattern recognition problem and propose a novel ensemble

MIC-based performance diagnosis approach. MIC (i.e. Max-

imum Information Criterion) [13] is adopted to discover the

associative relationship between two variables. The basic idea

is to build a signature database where every item is mapped

to one kind of performance problem and when performance

anomaly occurs, the culprits are pinpointed by looking for a

similar signature in the signature database. We first use the

normal running of each type of big data workload to train

a performance model (i.e. the parameters of ARIMA [14]

model) and a set of MIC invariants. Then we build a signature

for each performance problem. The signature is expressed as

a binary tuple consisted by the violations of MIC invariants.

All the signatures form a knowledge database which will be

used to find the culprits in the future performance diagnosis.

If a performance anomaly is detected using ARIMA model,

the performance diagnosis is triggered. Then we calculate the

MIC scores under the abnormal environment and find out all

the violations among all the MIC scores. Finally we find the

real culprits of performance problems by looking for a similar

signature in the signature database. Through the experiment

evaluation in a state of the art big data benchmark, we find

out our approach can detect the real culprits of performance

problems in an average 83% precision and 87% recall which

is better than a correlation based and single-model based

performance diagnosis.

Our contributions are three-fold:

• We propose a new performance anomaly detection

method (i.e. unpredictability) based on ARIMA model

for big data applications.

• We introduce a signature-based approach employing MIC

invariants to correlate a specific kind of performance

problem with a binary tuple which is consisted by a set

of violations of MIC invariants.

• Considering the variety of the big data application, we

propose an ensemble approach (i.e. building the ARIMA

model and the set of MIC invariants for different kind

of big data workload respectively) to diagnose the real

causes of performance problems in big data platform. The

experimental results show that this approach can find out

the culprits accurately.

The rest of this paper is organized as follows. Section II depicts

the basic idea and problem formulation of our approach.

Section III demonstrates the details of our approach. Section

IV shows the experimental evaluation in a state of the art

benchmark. Section V concludes this paper.

II. PROBLEM FORMULATION

The intuition underling our approach is that the performance

problems occurred in the big data platform can manifest

themselves as the violations upon the correlation coefficients

between performance metrics which is also mentioned in [15].

In the normal situations, the correlation coefficients stay in a

particular region. But in the abnormal situations, the value of

correlations may be deviated. Grasping this point, we build

a unique signature for a unique performance problem using

the violations of the correlations and formalize the perfor-

mance diagnosis as a pattern recognition problem. Assuming

(M1,M2, · · · ,Mm) represents a set of performance metrics,

the matrix COR where each entry CorMi,Mj
denotes the cor-

relation coefficients between metric Mi and metric Mj , i �= j
represents all the correlation coefficients between performance

metrics, we construct the correlation matrixes CORnormal and

CORabnormal for the normal and abnormal situation respec-

tively. If |Cor′Mi,Mj
− CorMi,Mj

| ≥ ε, a violation occurs,

where Cor′Mi,Mj
denotes the entry in matrix CORabnormal,

CorMi,Mj
denotes the entry in matrix CORnormal and is

called a correlation invariant, ε is the preset threshold, say

ε = 0.2 in this paper. We calculate all the violations and

use a binary tuple (1, 0, 1, 0, 1, · · · , 0) where ‘0’ implies no

violation and ‘1’ implies violation to identify a performance

problem uniquely. The length of the tuple is the number of

entries in the correlation matrix COR. Integrating all the

binary tuples constructed in multiple abnormal situations, we

obtain a signature database which will be used in the future

performance diagnosis. And considering the variety of big

data workload, we will build a correlation matrix CORnormal

for each kind of workload. Although Pearson correlation

coefficient [16] is widely used to determine the correlation

between two variables, this paper introduces a state of the

art and more efficient correlation detection method named

MIC [13]. If a performance anomaly is detected in a Hadoop

node (a name node or data node) , the performance diagnosis

is triggered. We first calculate the violation tuple under the

current abnormal situation then find a similar signature in the

signature database. If a similar signature is found, the culprit

is pinpointed otherwise we leave the problem to the system

administrators who will manually check the problems. Once

the performance problems is resolved, a new signature will be

added into the signature base.

Our approach mainly includes two parts and four modules

shown in Figure 1. The offline part contains two modules:

performance model building and signature base building. The

former module is to determine the parameters of a predictive

model based on ARIMA for specific types of workload. While

the latter module is to train the signatures for different per-

formance problems using MIC under different workload. The

online part also contains two modules: performance anomaly

detection and cause inference. The anomaly detection module

utilizes the performance model generated by the performance

model building module to detect the performance violations.

If an anomaly is detected, the cause inference is triggered

to analyze the real culprits leveraging the signature base

generated by the signature base building module. We will give

the details of all the modules in the following section.

III. DETAILS OF PERFORMANCE DIAGNOSIS

A. Performance Model Building

Intuitively the performance metrics (e.g. CPU, memory)

of one application under normal running could be described

by a dynamic process model. In this paper we adopt a
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Fig. 1. The framework of our performance diagnosis approach

commonly used predictive model, ARIMA [14], to depict the

dynamics of the performance metrics. ARIMA models are,

in theory, the most general class of models for forecasting

a time series which can be stationarized by transformations

such as differencing and lagging. The acronym ARIMA stands

for “Auto-Regressive Integrated Moving Average”, always

denoted by ARIMA(p, d, q), where p is the order of “auto-

regressive” terms, q is the order of “moving average” terms

and d is the difference order. The ARIMA model is built

on the ARMA [14]. In the original time series, a seasonal

or non-seasonal trend may exist which makes the time series

non-stationary. However a fundamental assumption for ARMA

is that the time series is stationary. Therefore to employ

ARMA model, the original time series is differenced to

make it stationary. Let X(t) represent a time series of one

performance metric. We first use runs test [17] to validate

whether the time series is stationary, if not stationary, the

difference process is conducted. The difference procedure is

formalized as : X ′(t) = (1 − B)dX(t) where B is the back

shift operator: BX(t) = X(t − 1), d is the difference order,

when d = 1, X ′(t) = X(t) − X(t − 1). After that, we use

zero-average to reprocess the differenced time series that is:

Y (t) = X(t) − ¯X(t) where Y (t) is the preprocessed time

series and ¯X(t) is the average of the time series Xt.

The following step is to build the ARMA(p, q) model for

Y (t): φ(B)Y (t) = θ(B)a(t) where φ(B) is the autoregressive

operator, represented as a polynomial in the back shift operator

defined as: φ(B) = 1−φ1B−· · ·−φqB
p, θ(B) is the moving-

average operator, represented as a polynomial in the back shift

operator defined as:θ(B) = 1−θ1B−· · ·−θqB
q and at is the

independent disturbance, also called the random error which is

always define as a white noise with zero average and variance

σ2.

The critical steps to determine the ARMA model are

model identification (i.e. determine the parameters p and

q) and parameter estimation (i.e. determine the parame-

ters (θ1, θ2, · · · , θp) and (φ1, φ2, · · · , φq)). We adopt the the

method mentioned in [18] to determine p and q. The auto

correlation function (ACF) and partial auto correlation func-

tion (PACF) are calculated for ARMA(p, q). If the ACF and

PACF of ARMA(p, q) exhibit a sharp decrease (i.e. trails

off) or vibrate around y-axis, then p and q are determined.

After determine the model identification, we use the Least-

Square method to estimate the parameters (θ1, θ2, · · · , θp) and

(φ1, φ2, · · · , φq). Finally we obtain the performance model for

one performance metric under one kind of specific big data

workload. According to our observation, there is no single

ARIMA(p, d, q) model to model the performance of all kinds

of big data workload. Hence, we develop an ensemble model

to build a unique ARIMA(p, d, q) for each specific workload.

B. Performance Anomaly Detection

After the performance models are established, they will

be leveraged to conduct performance anomaly detection. Our

basic idea for anomaly detection is that in abnormal situations

the performance models trained in the normal situations are

violated, we define this violation as unpredictability. For-

mally, (M1,M2, · · · ,Mm) represents the performance metrics

collected from the big data platform at runtime, M ′
i(t) is

predicted by the ARIMA, Mi(t) is the real observation of

metric Mi at time t, the absolute value of deviation between

M ′
i(t) and Mi(t) is defined as the unpredictability denoted

by ξ(t): ξ(t) = |M ′
i(t) − Mi(t)|. If ξ(t) > α, α is a

preset threshold, a performance anomaly occurs. Here we

adopt the simple threshold based anomaly detection method,

but more comprehensive methods such as likelihood ratio test

[18] are encouraged to be applied. Considering the computa-

tion complexity, we only use four performance metrics (i.e.

m = 4): CPU utilization, free memory, disk queue length and

network bandwidth as the performance indicators to conduct

performance anomaly detection.

C. Signature Database Building

As mentioned in Section II, we build a unique signature for

each performance problem occurred in the big data platform.

The signature is expressed as a binary tuple which is consisted

by a set of violations of correlation coefficients between

performance metrics. To capture the correlation between a pair

of performance metrics, we introduce a state of the art method

named MIC. The conventional Pearson correlation coefficient
and R2 based correlation detection method can precisely

capture the linear relationships or the functional relationships,

but are weak in capturing the non-linear or non-functional

relationships between two variables. While, MIC shows great

power to capture the complex correlation relationships. To

keep the paper self-contained, we give several definitions and

preliminaries about MIC.

Definition 1. Resolution Grid: Given a finite set D of ordered
pairs, the x-values of D is partitioned into x bins and the y-
values of D is partitioned into y bins, allowing empty bins.
Such a pair of partitions an x− by − y resolution grid.

Given a grid G, let D|G be the distribution induced by the

points in D on the cells of G. For a fixed D, different grids

G result in different distributions D|G.

Definition 2. Mutual Information: The mutual information
between two random variables X and Y is defined as:

I(X;Y ) =
∑

y∈Y

∑

x∈X
p(x, y)log(

p(x, y)

p(x)p(y)
)
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Fig. 2. The calculation of Mutual Information when x = 3, y = 3

where p(x, y) is the joint probability distribution function,
p(x) and p(y) are the marginal probability distribution func-
tion.

In the grid D, p(x), p(y) and p(x, y) are the ratio of the

number of data points falling in the relevant cell and the total

data points. For instance, in Figure 2 when x = 2, y = 2,

p(x) = 8/20 = 0.4, p(y) = 10/20 = 0.5, p(x, y) = 5/20 =
0.25 and when D is partitioned into 3−by−3 grid, I(X,Y ) =
(−0.00244)+(−0.00912)+0.0144+(−0.0231)+(−0.0558)+
(−0.0223)+ (−0.0304)+ (−0.0336)+ (−0.0134) = 0.0153

Definition 3. Highest Mutual Information: For a finite set
D ⊂ R2 and positive integers x, y, define

I∗(D,x, y) = maxI(D|G)
where the maximum is over all grids G with x columns and
y rows, and I(D|G) denotes the mutual information of D|G.

Definition 4. Characteristic Matrix: The characteristic matrix
M(D) of a set D of two-variable data is an infinite matrix
with entries:

M(D)x,y =
I∗(D,x, y)

log min{x, y}
Definition 5. Maximal information coefficient (MIC):The
Maximal Information Coefficient (MIC) of a set D of two-
variable data with sample size n and grid size less than B(n)
is given by:

MIC(D) = maxxy<B(n){M(D)x,y}

where ω(1) < B(n) ≤ O(n1−ε) for some 0 < ε < 1

Just as pointed in [13], we also use B(n) = n0.6. The de-

tailed description of the definitions and the boundary of some

variables could be found in the supporting online material of

[13].

The procedure to calculate MIC includes the following

steps:

• step 1: Find the approximative highest mutual information

for data D, namely I∗(D,x, y).The core of this step

is to find a optimal x − axis partition given fixed

y − axis partition using dynamic programming (Refer

to the supporting online material of [13] for details).

• step 2: Construct the characteristic matrix using the

obtained I∗(D,x, y) according to the definition.

• step 3: Calculate the MIC for D by looking for the

maximum value in the characteristic matrix.

The whole procedure is shown in algorithm 1.

Algorithm 1 MIC(D)

Require: D is a set of ordered pairs

Require: B is an integer greater than 3

for all (x, y) such that xy ≤ B do
Ix,y ← ApproxMAXMI(D,x, y)
// find the approximative highest mutual information

Mx,y ← Ix,y

min{logx,logy}
// construct the characteristic matrix

end for
MIC(D)← max{Mx,y}

In the normal situations, we build a correlation matrix

CORnormal for a set of performance metrics using MIC. Each

entry in CORnormal is a correlation score between a pair of

metrics named MIC invariant. For each performance problem

(e.g. memory leak, cpu hog, network hog) occurred in the big

data platform, we reproduce them and build the correlation

matrix CORabnormal under the abnormal situations. Then we

compare the matrixes CORnormal with CORabnormal and

find out all the violations according to the description in

Setion II. Finally a binary tuple, a signature, is obtained for

each performance problem. Integrating all the signatures, a

signature database is constructed. Considering the differences

of MIC invariants under different kinds of workload, we will

train a CORnormal for each kind of workload.

D. Cause Inference

After the performance model and the signature database

are constructed, the performance diagnosis can be ready to

work. If a performance anomaly using the approach mentioned

in the former section, the performance diagnosis is trig-

gered. Then we calculate the correlation matrix CORabnormal

and find out all the violations by comparing CORabnormal

with CORnormal under the same kind of workload. Assume

Sa = (1, 0, 1, · · · , 1) represents the binary tuple of violations

when a performance anomaly occurs, Sd = (0, 1, 1, · · · , 0)
represents a signature in the signature database, we use the
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Hamming distance to denote the similarity between Sa and

Sd, Dh = Hamming(Sa, Sb). If Dh < ε, the cause with

respect to the signature is chosen as the final culprit of the

current performance problem where ε is the preset threshold,

say ε = 3 which functions well in this paper; otherwise

the performance problem is left to the system administrators

who will manually check the problems. Once the performance

problems is resolved, a new signature will be added into the

signature base.

IV. EXPERIMENT EVALUATION

We have implemented a prototype and deployed it in the

controlled environment. We use an off-the-shelf tool, collectl
[19], to collect the process and operating system performance

metrics. The collected metrics not only include coarse-grained

CPU, memory,disk and network utilization but also the fine-

grained metrics such as CPU context switch per second,

memory page faults, etc. The number of performance metrics

is 30 and the sample interval is 5 second. In the following,

we will give the details of our experimental methodology and

evaluation results in two benchmarks: BigDataBench [20].

A. Evaluation Methodology

Due to the lack of real operating platforms, our approach

is only evaluated in a controlled distributed system. But we

believe it works well in a real system without exceptions.

The controlled system contains five physical server machines

hosting the benchmark. Each physical machine has a 8-core

Xeon 2.1 GHZ CPU and 16GB memory and is virtualized into

five VM instances including domain 0 by KVM. Each VM has

two vcpu and 2GB memory and runs a 64-bit CentOS 6.2,

Hadoop 1.0.2, Mahout 0.6 and our prototype.

BigDataBench is a benchmark suite from web search en-

gines, to benchmark and rank systems that are running big data

applications. It provides 6 representative applications from

search engines which are the most important domain in Inter-

net services in terms of the number of page views and daily

visitors. It also provides an innovative data generation tool to

generate scalable volumes of big data from a small-scale of

real data preserving semantics and locality of the real data. In

this paper we only choose four kinds of applications based on

Hadoop in BigDataBench: Sort, Wordcount, Grep and Naive

Bayesian classifier and leave other applications for the future

work. During all the experiments, the volume of the big data

is 10G generated by the tool in BigDataBench benchmark.

For the performance problems caused by runtime environment

changes, we inject the following faults: 1) CpuHog: a CPU-

bound application co-locates with TaskTracker competing for

CPU resource; 2) MemLeak: a memory-bound application

continually consumes memory of the data node; 3) DiskHog:

we use a disk-bound program to generate a mass of disk reads

and writes on the data node; 4) NetworkJam: we use “tc”, a

traffic control tool in Linux, to mimic the packet loss on name

node; for the performance problems caused by software bug,

we inject the following faults: 1) CpuBug: we write a new

java class which largely consumes CPU resource and load it

in the JVM in the data node using the attach API in J2EE 6.0;

2) MemBug: a new class is injected in the jvm using the same

method as the CpuBug. 4KB memory will be leaked once this

class is executed.

Each of the faults mentioned above will be repeated for

20 times and last 5 minutes. And multiple faults may be

simultaneously injected in one node. To get the ground truth,

we will log the fault injection time and types. We leverage

two commonly used metrics: precision and recall to evaluate

the effectiveness of our system.

Recall =
Ntp

Ntp +Nfn
, P recision =

Ntp

Ntp +Nfp

where Ntp, Nfn, Nfp, and Ntn denote the number of true

positives, false negatives, false positives, and true negatives,

respectively.

B. Performance Model Building

In this section we conduct several experiments to answer

the questions “how to build the ARIMA model”, “why an

ensemble model is necessary” and “is it efficient to detect

performance anomaly using unpredictability”.

Due to the limited space, we only show the experiment

results on CPU total utilization metric under different kinds

of applications. Figure 3 shows the CPU utilization of Sort,

Wordcount, Gred and Naive Bayesian classifier application.

From this figure, we observe that the characteristics of CPU

utilization for these four applications are apparently different.

Especially a two-phase feature is manifested in Sort applica-

tion. Take the CPU utilization of Sort application for example,

we calculate the ACF and PACF of the original data series and

observe that the ACF shows a slow decreasing with respective

to the lag (shown in Figure 4 (a) which implies that the

parameters p, d and q need further adjustion. When p = 3,

d = 1, q = 2, we observe a significant trail off in ACF

and vibration in PACF therefore there is no need to adjust

p (see Figure 5), d and q any more. Finally we get the

ARIMA model for the CPU utilization of Sort application:

φ(B) = 1 + 0.7772B + 0.6869B2 − 0.1509B3, θ(B) =
1− 1.2717B −B2, the variance of a(t) is 24.65.

We use the same method to model the CPU utilization of

wordcount application and obtain the model ARIMA(1, 1, 1):
φ(B) = 1 − 0.3122B, θ(B) = 1 + B, the variance of a(t)
is 0.5596. Comparing this model with the model obtained in

Sort application, we can see they are significantly different.

Therefore it’s necessary to build a unique ARIMA model for

a specific application.

To validate the effectiveness of performance anomaly de-

tection using unpredictability, we use the ARIMA(3, 1, 2)
model trained for CPU utilization of Sort application un-

der normal situation to calculate the unpredictability of the

CPU utilization under CpuHog fault injection and observe

the following result shown in Figure 6. A CpuHog fault is

injected at time point 37 on x-axis, before this time point

we observe that the predicted CPU utilization is consistent

with the original CPU utilization and the unpredictability
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Fig. 3. The CPU utilization under different kinds of workload

Fig. 4. The ACF and PACF of original CPU utilization

Fig. 5. The ACF and PACF of ARIMA(3, 1, 2)

stays under the unpredictability threshold; after this time point

the predicted result deviates from the original data sharply

and the unpredictability exceeds the unpredictability threshold

which indicates a performance anomaly occurs. Apparently the

unpredictability threshold can affect the performance anomaly

detection. In this paper we preset the threshold statically, say

17 for CPU utilization, which may bias the precision and

recall of the performance diagnosis a little and the dynamical

regulation of this threshold will be discussed in our future

work.

C. Signature Building

30 performance metrics are collected in our prototype and

the MIC scores of 435 (30 ∗ (30− 1)/2) pairs of performance

metrics are calculated. The correlation relationship with a

very small MIC score carries no information to build the

signature for a performance problem, hence we eliminate

this correlation. Take the Sort application for example, under

normal running we obtain a set of 83 correlation pairs shown

Fig. 6. The performance anomaly detection on CPU utilization

Fig. 7. The correlation pairs under normal running

Fig. 8. Zoom out of Figure 7

in Figure 7 and Figure 8 when the threshold of MIC score is

set 0.1. These correlation pairs are used as MIC invariants to

build the signatures. Figure 9 shows the correlation pairs in

the CpuHog fault injection experiment. The red line in Figure

9 denotes the violated correlation pairs, in this experiment we

observe 13 violations and nearly all the violations are relevant

to CPU metrics. Therefore CpuHog fault can be represented

by a tuple (1, 0, 1, · · · , 0, 1) where ’1’ denotes the violated

MIC invariant.

D. Cause Inference

Figure 10 demonstrates the diagnosis result when only one

type of faults is injected in the benchmark. We observe that

the precision and recall of most types of faults fall in the

range (80, 90) except the MemBug fault. The precision and

recall of MemBug fault are only 71% and 67 % respectively.

After investigating the CORabnormal under MemBug fault
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Fig. 9. The correlation pairs under CpuHog fault injection

Fig. 10. The diagnosis result when one type of fault is injected

Fig. 11. The diagnosis result when multiple types of faults are injected

injection, we found that the CORabnormal are quite different

which means the signature we used can not uniquely represent

this kind of performance problem. The improvement of our

approach towards MemBug fault will be discussed in our fu-

ture work. Figure 11 shows the diagnosis result when multiple

types of faults are injected in the benchmark simultaneously.

Pay attention to that, when multiple faults are injected the

signature is built for the combination of these faults instead of

single fault. Compared with the result of one type of faults,

the average precision and recall (i.e. Average the precision and

recall of all types of faults) have a slight decrease about 5%

and 9% respectively.

Fig. 12. The comparison when one type of faults is injected

Fig. 13. The comparison when multiple types of faults are injected

E. Comparison

To fully evaluate our approach, we conduct several exper-

iments to compare it with the Pearson correlation coefficient

based method which adopt Pearson correlation coefficient to

determine the correlation between two performance metrics

and the single model based method which doesn’t consider the

type of applications and trains only one ARIMA model and

one set of MIC invariants. The results are shown in Figure 12

and Figure 13. From these two figures, we observe that our

approach are better than the other two methods no matter in

average precision and average recall. The Pearson correlation

coefficient based method may loose several correlations due

to the weak power to determine a non-linear or non-functional

relationships. In our experiment, we find the relationships

between CPU utilization and other Memory metrics are lost

leading to a precision decrease in the final performance diag-

nosis result. The single model based method exhibits the worst

performance. There are mainly two reasons: a). a weak power

in performance anomaly detection due to the inefficiency of

a unique ARIMA model; b). a low quality of the signature

database where each item can not represent the performance

problem uniquely.

V. CONCLUSION AND FUTURE WORK

This paper proposes an ensemble MIC-based approach to

pinpoint the culprits of performance problems in the big data

platform. The basic idea of the approach is to formalize the

diagnosis performance as a pattern recognition problem. We
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build a unique signature for every performance problem such

as CpuHog and use this signature to find the cause of the

performance problem in the future performance diagnosis. The

signature is expressed as a binary tuple which is consisted

by the violations of MIC invariants. If the KPI of the big

data application deviates its normal region, our approach can

identify the real culprits through looking for similar signatures

in the signature database. To detect the deviation of the KPI,

we propose an new metric named unpredictability based on

ARIMA model. And considering the variety of big data appli-

cations, we build an ensemble performance diagnosis approach

which means a unique ARIMA model and a set of MIC

invariants are built for a specific kind of workload. Through

experiment evaluation in a controlled environment running a

state of the art big data benchmark, we find our approach

can pinpoint the real culprits of performance problems in

an average 83% precision and 87% recall which is better

than a correlation based and single model based performance

diagnosis. In the future work, we will discuss a dynamical

threshold regulation algorithm for the threshold mentioned in

paper such as the unpredictability threshold to provide better

diagnosis results.
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